Loading...
HomeMy WebLinkAboutStorage Bldg - COM Engineering / Geo-Tech Reports - 12/2/1994 y O l Z7 DEC - 21994 TECH-FAST eMETAL SYS 7 EMS INC. FOR APPROVAL ONLY Q STRUCTURAL CALCULATIONS FOR PARK PLACE MINI STORAGE DUNG KURT CHAFE N E 3150 HIVY 300 o4'NA o FAIR, WA 985-08 w w Ado �PEG19SC ��V�Fv PREPAR SION�' 1 A S, MARK DUNC . P.E. CHANGES THESE PLANS MUST BE SUBMIT GRANGES FOR APPROVAL ON THE JOB SITE PRIOR TO PERFORMING WORK FOR INSPECTION. MUST MEET ALL CURRENT WASHt GTON STATE CODES APPROVED MASON BUILDING INSPECTOR CHANGES SUBJECT TO APPROVAL /G�vS � MEc� 19�c� .�_� DATE!i IZ= y Headquarters:325 Tacoma Ave.S.,Suite 2,Tacoma,Washington 98402 20G/572 4440 Fax:572 6396 w TECH-FAST MINI STORAGE DESIGN Pagc 1 GOVERNI`G CODES Uniform Building Code , (UBC) 1991 Edition RISC Steel Consturction Manual , 1988 Edition NISI Cold-Formed Steel Design Manual , 1986 Edition SDI Diaphragm Design Manual , 2nd Edition MA`rERIAL SPECIFICATIONS -Purlins and columns , 4" and 6" , 16 ga. and heavier to be : ASTM A446 Grade D, 55 ksi min . yield. -Columns , 2 1/2" and 4" , 18 ga . and lighter to be : ASTM a446 GRADE A. 33 ksi min. yield. -Roofing, siding and partitions to be : ASTM A446 Grade E. 80 ksi min. yield. -Fasteners , as called out in drawings and details. SUMMARY OF MATERIALS BUILDING A ROOF PANEL 26 ga SuperSpan or as noted below SIDING PANEL 26 ga SuperSpan or as noted below PARTITION PANELS 29 ga Norclad or as noted below ROOF PURLINS 4Z16x2 . 25 @ 5. 0 ft c/c RIDGE PULINS 4C16x2 . 25 HEADERS 4C16x2 . 25 GIRTS 4SS 20 g_a. (25/80C/3) CONNECTIONS Center Span 1 . 69 kips Therefore use 3 TEKS End Span 1 . 35 kips Therefore use 3 TEKS Endwall 0 . 68 kips Therefore use 2 TEES Sidewall 0 .68 kips Therefore use 2 TEKS COLUMNS Use a 4C16X2 . 25 for all columns Group 1 Lby = 9 . 75 ft Lbx = 9 .75 ft Case 1 P = 1 . 69 kips Group 2 Lby = 5 .00 ft Lbx = 9 .75 ft Case 1 P = 0 . 51 kips M = 6 . 06 in-kips Case 2 P = 0. 25 kips M = 12 . 11 in-kips Group 3 Lby = 9 . 75 ft Lbx = 9 .75 ft Case 1 P = 1 . 27 kips M = 1 . 34 in-kips Case 2 P = 0 . 63 kips M = 2 . 68 in-kips PARTITION PANELS Lat . interior 29 Ga . Norclad with 4 fasteners per support Long . interior. 29 Ga . Norclad with 4 fasteners per support SIDING PANELS Endwalls 26 Ga . Superspan with 3 fasteners per support Sidewalls 26 Ga . Superspan with 3 fasteners per support ROOFING PANELS Lat . .roof 26 Ga . Superspan with 3 fasteners per support Long . roof 26 Ga . Superspan with 3 fasteners per :support BASE MEMBERS 5/32 x 1 1/4 Drive pin at CALCULATIONS BY MARK D. DUNCAN , P.E. TECH-FAST MINI STORAGE DESIGN Paae 2 Interior (lateral) 24 in . on center 16 as angle Exterior Endwalls 32 in. on center 16 as angle Exterior Sidewalls 45 in . on center 16 a_a angle 3/8 Y 2 1/2 exb bolts with Mullions 2 oer mullion DESIGN LOADS Snow Load = 25 psf (ground) Live Load = 20 r)sf Dead Load = 2 psf or actual loads Wind Load. = 80 moh exp. C p = L e C qq s I--__------=--- as = 16 . 40 vsf ht = 9 . 75 ft_ Cc = 1 . 06 I = 1 Ca = 1 . 3 otur.ward Cq = 0 . 7 upward p = 22 . 60 psf outward p = 12 . 17 psf upward Siesmic = Zone--3 V = ZIt:W/Rw Z = 0 . 3 I = 1 C = 2 . 75 °a = 0 . 00% Reduction factor for snow load over 30 psf . 4s' = 2 r;s f Rw = 6 L = 0 . 3 psf 0. 1375 W ROOF PANEL 26 aa. 3 ' -0" wide SuperSpan panel (attachment #1a) Fy= 80 ksi Snow = 25 psf Span = 5 ft . Dead = 1 psf Capacity = 68 psf --------- (based on 68 psf at 5 ft span) TOTAL 26 r)sf Therefore use 26 ga SuperSpan 7r YC SIDING PANEL lh ga . 3 ' -0" wide SuperSpan panel (attachment #1a) Fy= 80 k-i Wind = 22 . 60 psf Span = 5 ft . Capacity its = 90 nsf (based on 90 psf at 5 ft span) Therefore use 26 ga SuperSpan CALCULATIONS BY MARK D . DUNCAN , P.E. TECH-FAST MINI STORAGE DESIGN Page 3 PARTITION PANELS 29 a_ a . W -0" wide Norclad panel (attachment #2a) Fv_ = 80 ksi Load = 5 psf Span = 5 ft . Capacity. = 14 psf (based on 14 psf at 5 ft span) Therefore use 29 ga Norclad Yc:k�:x:k7::C:k�X•;::Yc :�;•i•7;� icY::✓. Y::Kr. Yc+: ROOF PURLINS See attachments #3a and #4a for general properties Span = 10 f t . Space = 5 f t . Snow = 25 psf x 5 = 125 Dead = 2 psf x 5 = 10 TOTAL 135 plf Mss = wl-2/8 1 . 6875 hip-ft Therefore use 4Z16x2 . 25 RIDGE PURLINS See attachments #3a and #4a for general properties Span = 10 f t . - - - Space = 2 . 5 ft . Snow = 25 psf x 2. 5 = 62. 5 Dead = 2 psf x 2. 5 = 5 TOTAL 67 . 5 plf Mss = w1 -2/8 0 . 84 kip-ft Therefore use 4C16x2 .25 EAVE CHANNELS See attachments #4b for general properties Span = 8 f t . Space = 2 . 5 ft . Snow = 25 psf_ x 2 . 5 = 62 . 5 Dead = 0 psf x 2 . 5 = 0 Mss = wl" 2/8 --------- = 0 . 50 kip-ft TOTAL 62 . 5 plf Sreq = M (12) /Fb 0 . 182 in^3 Eave channel and header to make up the eave member . CALCULATIONS BY MARK D. DUNCAN, P .E. TECH-FAST MINI STORAGE DESIGN Page 4 4" 16 ga cave channel = 0. 053 in-3 4C16x2 . 25 = 0 . 346 in-3 Total = 0 . 398 in-3 219 . 18% Therefore use 4C16x2 . 25 GIRTS Span = 5 f t . Trib = 4 . 88 ft . Wind = 22 . 60 psf w = 110. 17 p 1 f M = wl '2/8 0. 34 kip-ft. Therefore use 4SS 20 ga. REACTIONS & CONNECTIONS BIND TO SNOW RATIO 1 Center Span Columns 412 TEK 3 Fastener from 16 ga to R = w1fl . 25) 16 ga capacity (attachment #5) 1 . 69 kips Therefore use 3 TEKS ultimate = 1620 lbs allow = ult/2. 5 End Span Columns = 648 lbs R = wl 1 . 35 kips #12 TEK 3 Fastener from 14 ga to Therefore use 3 TEKS 14 ga capacity (attachment #5) Endwall Columns ultimate = 1970 lbs R = wl/2 allow = ult/2 . 5 = 0 . 68 kips = 788 lbs Therefore use 2 TEKS #12 TEK 3 Fastener from 12 ga to Sidewall Columns 12 ga capacity (attachment #5) R = wl/2 O . 68 kips ultimate = 1986 lbs Therefore use 2 TEKS allow = ult/2 . 5 794 lbs COLUMNS Columns arc divided into 3 groups : 1 ) Interior columns taking roof load . 2) Exterior endwall columns taking wind and roof lead . 3) :Interior columns taking roof and partition load . Group #1 tull snow lead Pmax = 1 . 69 kips Lbx = 9 .75 ft . CALCULATIONS BY MARK D. DUNC?1N , P . E. f TECH-FAST MINI STORAGE DESIGN Page 5 Lbv = 9 . 75 ft . Group #2 full wind lead PmaY = 0 . 68 kips Mmax = wl-2/8 wind load Lbx = 9 .75 ft. 16 . 11 kip-in Lbv = 5. 00 ft . With the 1 . 33 factor for wind and the load combination per UBC Section 2303 (t) : Case 1 P = 0 . 51 kips full snow/1 . 33 M = 6 . 06 kip-in 1/2 wind / 1 . 3:3 Case 2 P = 0.25 kips 1/2 snow/1 . 33 M = 12 . 1.1 kip-in full wind / 1 . 33 Group 43 5 psf partition load Pmax = 1 . 69 kips Lbv = 9 . 75 ft. Mmax = wl"2/8 wind load Lbv; = 9 . 75 ft . 3 . 56 kip-in With the 1 . 33 factor for wind and the load combination per UBC Section 2303 (f ) : Case 1 P = 1 . 27 kips full snow/1 . 33 M = 1 . 34 kip-in 1/2 wind / 1 . 33 Case 2 P = 0 . 63 kips 1/2 snow/1 . 33 M = 2 . 68 kip-in full. wind / 1 . 33 (Refer to attachment #6 for column analysis) Use a 4C16Y2. 25 for all columns LATERAL ANALYSIS All of the partition walls and some of the exterior walls are acting as shear walls in accordance to SDI . With the areas being fairly small the tributary area method will be used to determine the lateral forces . Wind Loading_ Lat . = 14407 lbs =Area Lona_ . = 3093 lbs Siesmic Loading_ x = 1 Lat . = 1237 lbs Long . = 12.37 lbs Shear wails ( lateral ) Lar. . = 450 ft . Shear = 32 . 0 plf = 16 . 0 plf (for roof ) CALCULA` LONS BY MARK D. DUNCAN, P . E. TECH-FAST MIN! STORAGE DESIGN Paae 6 For interior partition walls : (Der attachment #7 ) 29 Ga. Norclad with 4 fasteners per support For exterior sidina: 26 Ga . SuDersDan with 3 fasteners per support *Y:., ?C It Y: XY:*AAA Y:A ttA Y;+:i;7 Y:*Y<W YC;k*YC**:k ;�;:':•k 7C 7:�:�: Y:;C t Y:Y; For roofing : 26 Ga . SupersDan with 3 fasteners per support A *Y,**Yk W W W W It*It:k****W A A Y:Y:X*:k***X***;k Y:*A'*I:k)t*Y:YL A Y: Shear walls (longitudinal) Long. = 150 ft . Shear = 20 . 6 olf For interior Dartition walls : (Der attachment #7 ) 29 Ga . Norclad with 4 fasteners _Der su000rt A X',k***:k:tA A-,k XA:C;k*YC***A:k'.`?X AC k'AA*A X)t A A AA X x't:k)k w :t**:k For exterior si.dina: 26 Ga . SuDersDan with 3 fasteners Der ouDDort For roofina: 26 Ga . SuDersDan with 3 fasteners Der su000rt AAX*A'XA**;kA** AIX**A*AX*X*Y >< :k**Y A*lip.,AtA BASE ANGLE ATTACHMENT (light gage) Interior (lateral) Shear = 24 . 4 olf Derpendicular to wall Shear = 32 . 0 plf parallel to wall Ten; = 152 . 1 plf uplift 5/32 x 1 1/4 Drive Din at 24 in. on center Exterior Endwalls Shear = 103 . 1 Dlf oeroendicu.lar to wall Shear = 32 . 0 r)lf parallel to wall T'eris = 60 . 8 plf i.ipl if t 5/32 x 1 1/4 Drive pin at 32 in. on center Exterior Sidewalk Shear. = 96 . 0 plf perpendicular to wall CALCULATIONS BY MARK I). DUNCAN, P. E. TECH-FAST MINI STORAGE DESIGN Page 7 Shear = 20 . 6 plf parallel to wall Tens = 30 . 4 plf uplift 5/32 x 1 1 /4 Drive pin at 45 in. on center Mullions Shear = 1031 . 1 lbs perpendicular to wall Shear = 0 . 0 plf parallel to wall. Tens = 304 .2 lbs uplift 3/8 X 2 1/2 exp bolts with 2 per mullion Fastener capacities 5/32 x 1 1/4 Drive pin into 2500 psi concrete TENS = 1388 lbs ultimate SHEAR= 2128 lbs ultimate Factor of safety = 4 TENS = 347 lbs allowable SHEAR= 532 lbs allowable 3/8 dia x 2 1/2" emb expansion anchor into 2500 _psi concrete TENS = 3281 . 0 lbs ultimate SHEAR = 4087 . 0 lbs ultimate Factor of safety = 4 TENS = 820 . 3 lbs allowable SHEAR = 1021 . 8 lbs allowable Fastener quantities 1 => (x"2+v"2) - . 5/SHEAR+Tens/TENS BASE ANGLE CAPACITY (Light gage) Assumes that pin or expansion bolt is _placed within 1" of the verticle leg of the angle or channel . Fv = 55 koi Interior (lateral) Tens = 152 . 110 plf uplift Mact = 0 . 152 kip-in Fb = 0 .75Fv(1 . 33) = 54 . 8625 ksi Sreq - 0 . 003 in"3 t = 0 . 037 in Therefore use a 16 ga angle Exterior Endwalls Tens = 60 . 844 plf uplift Mact = 0 . 061 kip-in Fb = 0 . 75F'v ( 1 . 33) 54 . 863 ksi Sreq = 0 . 001 in-3 r_ = 0 . 024 in Therefore use a 16 ga angle CALCULATIONS BY MARK D. DUNCAN, P . E. i TECH-FAST MINI STORAGE DESIGN Paae 8 Exterior Sidewalls Tens = 56 . 498 plf uplift ."fact = 0 . 056 kip-in Fb = 0 .75Fv( 1 . 33 ) 54 . 8625 ksi Srea = 0 . 001 in 3 t = 0 .023 in Therefore use a 16 as anale CALCULATION'S BY `'TARE; D . DUNC:AN , P . E . t SUPER SPAN ZINCALUME • a.7'-t _ Twice the Ufe l ❑ Full 36"coverage ❑ Custom lengths available [j 1 1/4"deep trapezoidal ribs 12"O.C.for maximum strength ❑ Full bearing rib at side-lap provides consistent weather-tight joint Super Span'Section Properties t S+ 1+ S_ ❑ Available in attractive Silicone-Modified Gauge (lbsgtg (in=eft) (ins/ft) (inYft) (ins/ft) Polyester colors or bare Zincalume" ❑ Complementary trim and accessories readily 26 0.90 .0461 .0475 .07I2 .0384 available 24(E)' 1.16 .0638 .0648 .0996 .0522 24(C) 1.16 .0667 .0656 .1058 .0540 'E indicates ASTM A446 Grade E steel 'C indicates ASTM A446 Grade C steel ASC PACIFIC Building Solutions in Metal Sacramento-800-726-=.916-37Z-6851 FAX916.372-7�06 Los Angel ea-800-272.2466,909.823-IMI FAX 909-823-2625 Phoenix-800-551.2062,602.598-1200 FAX 602 598-1219 Tacoma - 800-7334955,206-383-4955 FAX 206-M-0791 Salem-800-336-1509,503-362.5638 FAX 503-362-W4 Spokane--800-7763771,509-535-4600 FAX 509-535-1346 Anchorage-800478.2727,907.349.2727 FAX 907-344-7095 I SUPER SPAN Super Span'Allowable Spans(ft-in) Loads(PS ) Gauge Conditions 10 I 15 20 25 30 35 I 40 45 I 50 f l0-6 8-7 7-5 6-7 &1 5-7 5-4 54 4-3 SS UI80 7-6 6-7 6-0 S-6 S-2 4-1I " 4.6 4•-5 26 f 13•l 10� 9-2 8-I 7.6 7-0 I 64 I 6-2 5-10 DS UI80 10-1 8-i0 8-0 7.5 7-0 6-7 64 6-1 5-10 ' f 13-5 10-II 9.6 8 6 7.8 7 -1 6-8 6-I 6-0 TS U180 19 6 I 8-t 7 6 7-0 6 7 6 2 I 6-3 5-8 I 5-6 f 10.10 8-10 7-7 6.10 6.2 5-10 5-5 5-1 4-10 55 U180 8-5 7-4 6-7 6-2 5-10 5-6 '. 5.1 14_ 10 24 f 13.7 11-1 9-7 8-7 7.10 7-2 &10 6-5 6.1 Grade C DS U180 11.2 19-10 8-11 8-2 7-10 7-2 6-10 6.5 6-1 f 13.8 I 13-7 9.8 8-8 7-11 7-416-10 6-0 6-I TS UI80 110.6 ` 10-6 8-5 1 7-10 17-3 6-1I , 6-7 6-5 &1 Super Span'Allowable Load(ibs./fLI) Span Gauge Condition 3'-0" 3'-6" 14'4" V-6- S'-0" � 5'-6" 6'-0" 16'-6" � T-0" 7.6" � 8'-0" SS 11I80 1123 90 66 46 I 34 I 25 I 20 I 15 I 12 I 10 ( 8 26 40 35 30 27 DS ( UI80 1190 139 107 84 I 8 ( 56 I 47 37 0 24 20 f 198 146 112 88 71 59 50 42 36 32 28 TS U180 198 146 112 88 68 5I 39 31 25 20 17 SS I VI80 i 129 95 72 S7 46 35 27 21 I 17 14 I 11 f 204 150 115 91 74 61 SI 44 38 33 29 2Grade C DS UI80 204 150 115 91 74 61 51 44 38 33 27 TS If 209 153 117 93 75 62 52 1 44 38 33 29 U180 1 209 153 117 93 75 62 52 43 3 28 23 Notes: C Steel conforms to ASTM Grade C43.5 ksi minimum yield(24 gauge),and ASTdt A446 Grade E,80 ksi minimum(26 gauge). ❑For wind loading,multiply allowable load values by 133 or allowable span values by 1.15. ❑Calculations based on 1986 AIM Specifications for the Design of Cold-Rolled Steel. ❑FOR SPANS OVER FEET,PLEASE CONTACT YOUR ASC PACIFIC REPRESF.iYTAM Loading Table Legend Road limited by flexural bending stress L-Span(Inches) Ux=-Load limited by deflection SS-Single span � t— L Support TYP DS-Double span TS-Triple span or More ��- L --— L L //yy���� A5C PACIFIC VI! A BHP Company Building Solutions in Metal m ASC Pacific,Inc. February 1993 Pnnted in USA Revision 5M (PS170) ti .:a -.;:' • '_ - fir` ••�, '� - ?mil � • � � � t ,• - nl FeaturingI ---T fj CCR��LITJCUII N '' I . . . the zinc/aluminum `got-dip alloy coating which offers ua to four times the service life - g. M. of standard galvanized coatings. C Full 36" coverage C Lak-proof, weather-tight lap system C Reduced flat area for increased load- bearing capacity and ccnsistant, =Mc- tive appearance C Installs 20-5013/a faster ' C Cesigned for easy nailing or scraw-type Wt. S- I. S- I- fastening Gauge (Itrsjft.=} (in.-/ft) (in.vft.) I (in.=fr,.) I(in.•;�) C Complementary trim and accessories 30 1 .57 .01115 .0061 .020e- 005= readily available 29 .70 .01 ca^ .0077 030, .007; C Available in attractive colors or bare 25 -86 .0185 .0096 -0414 AC90 Zncalumea Northwest Regional Ottice: 276-383-355. 2141 Milwaukee'Nay. P.O. Sax 2075, Tacoma, 'Nasrrr.gtcn 3aa01-2C75 wasaingtan State —800-2r-3-21 10, 8GG-562-8412 Western U.S. —800-s25-5595 Naticnwids —8CCI-37s-a7a1 Manufacturing Facilities: Arc^crage. AK 907.561-6060, 800-478-2727:1 Sookdne. WA 309-535-0600 :1 Regienal U.S. —800-625-2502 Western Regional Office: 916-372.6a51. 2110 Enterprise Blvd..West Sac.amenta, California 95691.3,L33 N. Califerria —800.952.5629 'Nes;ern States —800.952.5605 Manufac:unng Fac-lides: Las Angeles. CA G Phoenix,AZ SouthwR3t Regional Office: 81 7-a8:-3521, 40e. E. Oallas Raad. Grape`rire• Tsxas 76C51 Call Collect Manufamrirg Fac:liaes: Ocessa. TX. 91 5-363.3255 C Ltttte Rack. AR. 501.562.31 12 O San Antonia. TX. 512.55l-8366 Call Callec: Corporate 1-feadouarers: 910-372-;3a51. 21 t0 Entararisa Blvd.. West Sacramenta, California 1°89:J493 +. gp SS I U1f20 ..I 69 I a c. 26 117 11 8 16 111 71 49 36 23 2_ TS 18 Gau g s I U1f20 ill1 I 71 I 4g I 33 I 22 I 16 I t t 29 SS I U 1f20 ` 88 ( 56 I 34 I 22 I 5 I t 0 17 Gauge TS I f I t-2 ( 91 I 63 I 46 ( 366 I 2S I 23 U120 142 91 63 4- 29 20 15 SS I Utf20 ` 111 I 71 49 I 36 28 I 2-1 ! 18 I 25 111 71 4 28 18 113 ! 9 f Gauge 1. 9 115 80 5� 4. 35 29 is I U120 I t79 I t 15 80 ( 55 I. 37 I 26 I 19 NOTES: Q Steel g_de conforms to AS TM Grade E.80,000 Psi mirtirnum yield. Q For wind loading, multiply tabulated andlor calculated values by 1.33. Q Allowabie loads tabulated are based on flexural stress ardlcr U120 deflection. an ASC Pacific sales engineer for allowable bearing scesses. G�racrg;Fabte•Fegen ,- t Load limited by flexural bending stress L—Spars Uxxx--L oad limited by deilec-.cn SS—Single span Support i YP OS-0cuble scan L — i L - I TS—Triple scan -. L - i - L - - L - C ASC Pacific, Inc. AuguS, t988 Pnnt2d in USA PC 6M 4 Ww-r PPOFE?t:'c"a OF GRaS"a ui710H tJg:. tic Q .. Araa I aer Axis Y-I Axis Y-Y B foot lx SIR) Sx(h) rx • Iy Sy(l) Sy(r) ry tn. in. in. in. in. in.2 Us. in.4 in.3 in.3 in. in.4 in.3 in.3 in_ 4.0 Z.Z50 16 0.060 L.057 0.1875 0.500 2.04 1.508 0.714 0.714 1.585 0.482 0.525 0.362 O.S?n ` 64 2.250 16 0.060 Lori O.IS75 0.720 2.41 3.919 1.306 1.306 2.333 O.S6t 0.728 0.371 0.383 8.0 2.710 16 0.060 I.057 0.1871 0.100 3.06 8.7t4 2.178 2.178 3.1t2 0.9S8 1.164 0.5t8 1.047 I 14 O.a75 I.013 0.1975 1.t25 1.93 t0.310 2.702 2.709 3.t03 1.22? 1.435 0.649 1.045 t2 O.I05 I.158 O.t875 1.571 5.36 14.9SS 3.747 3.747 3.085 1.109 I.953 0.312 1.041' 1.0 2.210 16 0.060 1.057 0.157-, 0.100 3.06 10.308 2.211 2.211 3.3S- O.S110 1.029 0.311 0.947 14 0.075 t.013 O.t875 I.M 3.93 12.8Z0 2.941 2.84? 3.375 0.796 1.252 0.4?2 0.34[ t2 0.105 I.16a 0.I815 I.575 5.36 17.761 3.341 3.947 3.352 1.105 1.704 0.530 0.337 10.0 3.250 14 0.075 1.0?3 0.1875 1.310 4.51 20.244 4.041 4.041 3.972 1.158 2.092 0.846 1.104 12 0.105 1.160 0.t271 1.3?0 6.j3 28.100 5.620 5.520 3.3-Ta 2.731 2.560 1.1?0 I.202 PROMTH-S OF EF EUPIE SEC71OY (A:i-s Y-Y) Si:- flea in tensiur f44: in G�aAre,s;an 0 1 8 qa. t Ix I Sx(t) I S.c(b) ty ! Sy(I) I Sy(, ) Iy Sy(I) I Sy(r) in. in. in. in.4 in.3 in.3 in.4 f in.3 irt.3 in.4 1013 in.3 4.0 2.250 to 0.060 1.50c" 0.530 0.741 0.451 0.513 0.32? 0.420 0.406 0.346 0.0 2.250 I6 0.060 3.?18 1.205 MS3 0.523 'O.1I3 0.345 0.434 0.41! 0.350 8.0 2.750 16 0.060 8.505 1.148 2.122 0.323 1.140 0.476 0.700 0.567 0.462 14 0.075 10.830 2.562 2.675 1.1?8 1.423 0.610 0.950 0.30 0.537 12 0.105 14.986 3.747 3.747 1.709 1.953 0.91:2 1.4?2 1.431. ( 0.374 1.0 2.210 16 0.000 10.308 2.045 2.241 0.594 1.006 0.353 0.441 0.447 0.352 14 0.075 12.SZO 2.716 2.835 0.774 1.252 0.475 0.603 0.555 0.454 12 0.10S 17.76! 3.?47 3.947 1.105 1.704 0.610 0.ISO 1.167 0.6al 10.0 3.250 14 0.075 20.244 3.611 3.344 1.80t 2.015 0.76Z 1.416 1.024 0.7S 12 O.IO5 22.100 _5.411 5.516 2.731 2.850 l.t?0 2.241 1 1.904 t.tl5 ADOMONAL PA2AeETE?S B t _ 0 3 qa. t a .t _ Cv I r0 irt.. in. in.. =in.4 in.6 in. in. _ -_.._,_.- -..__''=^•:•. __jr 2.250 16 0.060 1.372 0.000720 2.600 2.745 2.903 - -- :6.0 2.210 16 0.060 1.211 0.070&S4 S.t70 3.101 3.t7l D 8.0 2.750 16 0.0--•} 1.371 0.001020 14.277 4.181 3.146 14 0.071 1.379 0.00?tOl 17.122 4.364 3.143 l2 0.105 1.390 O.OJ519a 25.161 4.321 3.937 1.0 2.250 16 0.060 1.072 0.00 Hao U.567 4.951 3.364 - 14 0.07; 1.076 0.002107 14.423 4.123 3.359 12 0.105 1.031 1).005792 20.361 4.931 3.347 1•i.0 3.250 11 0.07; 1.522 0. 4!3,2 5.493 4.723 1) n Ins 1 Czlt A.M,. _t._ 4: I.,1 1 .441 1 711 3 Ar?a far Axis Y-T A::s Y-f 8 ' ba: 1z Szit) I w hi rz I Eya Sy(I) 5y(r) ry in. in. in. in. l.'ss. in.4 in.3 in.3 in. in. L 3 in.3 in. 4.0 2.250 16 0.00 0.?-= 0.LMi 0.E30 2.04 1.57 0.782 0-71-23 1.5_1 I.I=T 0.312 0.312 1.37," fi.0 2.=0 15 0.061 0.144 0.187S 0.720 2.45 4.=16 t.345 1.345 2.357 1.M 0.313 0.M L. 8.0 2.751i (6 0.060 0.144 0.IS75 0.1•)C 3.Oa 8.37a Z.-ill Z.ZI? 3.t4t 1.7?2 0.:3? 0.53? 1.41i ;4 )jt)71 0.370 0.IM l.l_S 3.3.; !1.0-1 2.76Z Z.75Z 3.124 2._51 0.57s 0.M 1.41_ I2 0.!05 [.02! 0.1975 1.S7a 5.35 t3.332 3.32: 3.`3 1.120 2.!'i"c 0.453 0.111 1.4:f 7.0 2.'s,} !S 0.')a) 0.144 ).tM 0.•?•?0 3.Is W.4?s 2.121 2.3i21 Z.41S 1.[Z5 0.34a 0.3123 1.112 I4 0.07= 0.170 0.[a7S L.t'_5 3.33 13.070 2."0S 2.?t,S Z.445? 1.417 O.S�r} 0.No t.E2' .2 0.105 t.OZ'- 0.1271 1.171 5.36 1S.151 4.0_1 4.035 3.313 2.'.12 0.705 0.70S I.E30 10.0 3.=0 14 0.071 0.17C 0.L971 1.350 4-S ZO.525 4.M 4.101 M11 3.3EZ 0.977 0.377 t.577 !Z 0.10= 1.021. 0.IMF 1.310 s.43 'IS.5-7 5.70? S.70? 3.?3a 4.7E7 1.237 1.237 MS3 Pa$?c rt:5 OF 877_C7I9F S rI,N Tap ^!Q. In Colic. f lQ. [d "03C. ' Q: Side ia Imo 1.°it aid? i,� crp- Q 8 ga. t fs S:(':) Sx(h) I: 1 S.t S;: Iy I Sy(:) 5 (r) fy Sy([) Sy(. in. in. in. in.4 + ir..3 in.3 ( in.4 ia.3 in.3 in.4 in.3 I in.3 in.4 I in.3 in.; 4.a Z.214 t5 0.Oc0 I.S7S 0.713 0.777a 1.57.`. 0.776 0.713 1.053 0.=30 0.355 [.0.3 0.3a: 0.3E 0.0 Z.Z50 1.6 MS-3 4.023 1.235 1.321 4.012 1.3214 1.23S 1.OS3 0.371 0.157 1.053 0.367 0.17 8.0• 2.710 Ia 0.060 8.77? 1.922 2.1-3 a.M 2.1=3 1..3102 1.510 0.4?7 0.472 1.5[0 0.47Z 0. l4 0.071 11.0-1 2.435 2.a.37 1[.047 Z.687 2.4:S 2.053 0.'s7-7 0.a'75 2.0So 0.505 O.a2' 2 0.tOS 15.332 3.3:3 3.M 15.3s2 3.M M. 3.3-a3 3.[is 0.M 0.953 3.(?3 0.?S3 0.�5 9.0 2.250 E6 a.O6J EO.4?4 2.0771 2.ZQ3 10,4a4 2.2?1 Z.071 1.053 0.377 0.368 1.053 0.38a 0.37' 14 0.075 13.070 2.SSO Z.814 13.010 2.314 2.360 1.33- 0.430 0.455 1.354 0.4"ca 0-=? I2 0.145 la.t_7 4.1. 4.035 IE.157 4.021 4.O3S 2.012 0.M 0.701 2.02 0.705 0.70` 10.0 3.250 14 0.073 20.448 3.342 3.124 20.44a 3.324 3.343 2.727 0.71'i 0.5E-3 2.727 Mal 0.74: 2 0.t05 28.147 5.088 5.561 28.547 5.561 5.058 4.322 1.IV 1.110 4.382 1.IN I.tZ4 B ADDITIONAL PARA:1:752S Size _. - 0 8 51. t N7 I C'l Theta in. in.4 in.4 in.6 deg. d�gr��s 4.0 Z.25C IS 9.0z0 t.013 0.007729 2.535 33.752 6.0 2.25:) 1; M;o 1.197 0.000sa, 6.080 23.741 D 8.0 2.7°•' 16 0.OE0 2.939 0.00E030 17.755 [13.E4( [- 0.p:3 3.'77' 0.002(')•) 22.(?; [t.)6•} 12 0.!iS 5.l0_ 0.005723 30.5:i 20.!49 1.0 :.if., lE 0.9:0 2.41") 0.01Mac. 1-.412 12.755 [- 1.07; 3.057 0. 0') 17.9':3 [1.841 ..25.) !- ).07 6.987 i.1(, 1 5z.!:? 1?.a;- I L O �f-t'CGG�?WlGftiT � �� COLUMNIS WITH COMBINED BENDING AND COMP.RESSIM InDu Darameters: 4SS 20 cra Depth = 4 A' Kx = Flange = 1 .25 B` Kv = i Lit) = 0.3 C ht = 1 Thickness = 0.0345 t Lx = 5.00 Radius = O.0625 R Lv = 5 E _ 2950 Lt = G = 11300 Fv.f, = 33 P = 0 Mr = 0.00 Fu = 50 My = i; ..,e a:.r.,t;I,t:k* :tyr+ -r.r.t .t,t';t«,n A t..«:t 71 a;k:kti;t * RESULTS. . . . . . . . . . . . . . . . wind increase N Pa = 1 .49 ki.ns 4SS 20 cra Ma = 3 .5.3 kin-in Section will work * (E(T. C5-i; = o.0ii ifq. i;5- i = 0.00 (Ea. C5-3) = 0.00 <--Controls a«a.�.......... Y:t=:ti•.;�..t..,......+.*i-,+�.i;y.i�.«''';N+:*;:++:«' .«t�.;tt{;r .tF.r..«::+.,s i.�,::«;.w!-,...�.... V'28 Charts and 7hbles for use with the August 19. 1956 Edition of the Cold-Formed Specification N al Inc) M=oo�TT 'r�mp9cj to in 71,7NOpp in al a2,n [M-1��T_ `I n N X C S Cl)Oi CMD J' c�'7 llp CaI� �x"J Lam'] tun "1 uIn U'3�J CO(N7. C.3 C7Nt, � W ^000 0000 00000 0000 0000 0000 0000 E ONM ONTuIO NT1n to o00�+N Min in<z c2 t2,2 L C uI Co to tL MM P9 C]M mZ Cl Cl �n cD CD c MMMM M M CJ M N N CV N N GV N N N -- --�^+-� ^+ -+.+.-+ .-�.».+.r -..-..•. V - Im,c6 NO to N ul=to e� O C-O -+.+ ONM - .,.y C a o0 o000 CJ COO cD�p t;7%R cD 80�0 NMMM az- 7 NN T TTT TTT'T MGC7MMM MMMM NN"c4 ----+ - ---- O M M M C-00 �D-'oo --� 3 OOMM QlOOC1 ulN00 ru7 c) r CL^tf]l�C7 NL�G9 cD N In.•O Mof C'T l� 2000 00 C:J T 11N-» I U OTNtD MTO NOC-cp ul MNN� -. O 0000 OCOO u7TMN 000 0000 OOCO OOOC OCOC E ¢W o0 T N TS NTM N•- OC] �•W= s T l in e+ O O CE O oo-+M M N �+^cl, In m'r t-8 C0 00 J 7 T = TTCC oO 00 C-MN mMNe.,�, P cj NaO TN o! oc TUJN-+ yW t7 O.T..-.Cp pC-Mppp+ooO CpO OoM.pp�OJp p-- O pNSBpO ppp p00 Opp op Ms 0000 8000 0000 0000 0000 �C! O 0000 0000 COOOO OOOC COOL OOCC 0000 O _ +� G7C1�0 0--000 C---t�0m co CV Tc7 tz 'n In COONC7 0000-� U 00O N--N Tu0TT1n til-C-L- u0�n in In QQfI CC1l C90 ko U E O �OOuI TTTT TTTTT MM Ili M MMMM MMMM TTTT � r.� 0000 0000 00000 0000 0000 0000 OOOC x g:-C.'1.O ITN t- OOOM LAN O.-+In0 wn Min Nan C.0 u]u7 GEC C x H O0C[R& o0C-La ul --O oo C-C- u7TM c- u]MCVN OC-C�t'i Inr NN MMMM NNNN MNNNN NNNN NNNN NNNN M-MMM CCCCD OOCC OCOOO CCCO C000 OCOO COOL f d C-O CITC-O ��o9 ul C- cl—Vu r1M L7 C- ::JONT �• d r O:CO :100-- NNN �c+L'l L9 un NNN MC'a'T L^,LL'0J u:L:uI LC MTTT TTTTT '_+IMMM MMMM MMMM M__MM O C000 0000 OCOCC CCOC OCCO OOCO CCCC L OIL:NJ ululpp t- inN Mtn �n pppp00Nr.- n CfL: 00 M 0 op M C-00 u:-- C-N O M M N cQ 00 O--M OCi OMC-M JMQIti ��G'I C-t� =LnT twin T:'7 A ✓� MN-... --00 000000 COCO OOOC ,...000 .x C�OC OOCC OCCCC COOO OCCC COO^ OCOO M.NOO T'..'1 ---- ---O MNML� � ^9 I[::CMCf TM-+00 C- HOC- O'.'.TT NOoO-- t-M In� .C--•In r OC 00 OON O::NO O OC- oo'J L'7T eo T'�^M uI T-'M rMM�V OOCO 0000 0000 0000 OOOOC OCOO OOCO OCCO OOOC L�oOO v..W OOMp L7 •..+-OC-N ONOIn O-.t— MNOOT pp MT tiM--r u]V'i Qf-00 OC,j TC-L--oo Nr-T-�O L�000 N O Cl COO TTuIO '+ NN C-^L`0000 `STT T t C 7 -L7oO x N.n _ W NNNCV NNNN NNNNN ----+- .- -- -- -.- 0000 Z ?X Q _N O t-In go^D =uJ O�C'o M�.'7 In,= T T u]u7 rA^J L-��n--}}00 ee�� 001� TEA CIN NNCC-+ T^A�A'�! y C N L'l 111 N C-M O C-�O 00 C7 Cl C-u]T :D T M:`l T oO c4 'x ZZOaoM- TO--- - --- V- 3 1= c7C-C-N -�ooTV QLL x OMON C'-+O� MTu0Tu0 ==in 00C-m eT Moo CIN MN-+u10N------ 'j'{L c2. RE--cn C-t6 TM OTC+l NN N 000 0000 0000 U!- Z O:1 N :D M c' C- Oo pp C- G7 --77��'V C�Gl cD N in in a 0Tp QCON CIM N--Op, �JMq NN� NNNN '�^VO ci aO QIONL�C' 9ob T-. 011 N. . C- 000 7JO o0:C uO TCVN TMN-- MMN--- N-+-- 3 m �, Coco �} )CD M InCDM •aMo2 �0---• ooT--M �o in �, Op O 00 MOO Npin NN T--}}M u] T:JO Ot-O-r O---1T7 in 12[� N C-ul �C7OT C-uOTM "..�TMCJ �MCJN TN^J.r -r00 00 --0000 0000 0000 0000 0000 ooinul oouljul oOU13LOL7 Oululul oininin OulunIn Ou.u0ul in Inc-r �nIntir- In Intititi Intic-ti Intit-t- antic-r- kc:c tiN C-C-MM C-C-M C`'] C-C-MMM C-:JIn t-I t-:'MMM C-M^7M G� 0000--n0 000000 0000000 OpOOO 00000 00000 00O^O --00 --00 000 OOC --000 000 LOCO Lc: ==e=O C000 CC000 OCOC CCCO OCOO OOOC N in In in o un in In o U'j,n in o m u0 In o n LO oo in in o m in Ln ..-M_O C-CM M_OI'-O- O1'- 0'[� O[�• ^�[-•- �00 00 --COC -'0 C ,--.COa .•-COa C^.�a G OCCO 0000 00000 OOOC OOOC 0000 OCOO UI O In LO in pp d C O uull uOJ in .. cn Fca o 0 0 0 0 0 0 THE RIGHT BUILDER FASTENER FOR YOU ash~qf� Buildex is the preeminent leader in metal fastening standard and specialty designed fasteners suggested — systems.We are continually developing new fasteners, for a variety of applications. systems, and fastening techniques to solve today's Buildex Traxx`*and Teks, self-drilling fasteners exhibit metal fastening application problems to increase your excellent strength, sealing, and performance features productivity and the quality of your fastenings. not found in any other self-drilling fasteners. Effective,consistent, and reliable fastening, are the Technical assistance regarding Buildex fasteners results of choosing the right Buildex fastener for your or applications is available by contacting Buildex's specific application. This BUILDER METAL FASTENING Application Engineering Department toll-free at SYSTEMS SELECTOR GUIDE is a representation of 8001323-0720. *ULTIMATE PULLOUT VALUES *ULTIMATE SHEAR VALUES STRENGTH (POUNDS) (POUNDS) CHARACTERISTICS SIZE POINT 26 24 22 20 18 °h16 E 14 12 1/8 3/16 114 SIZE.POINT 25.26 24.24 22.22 20-20 18.18 6E 14-14 12.12 1/8•1/8 V16.3116 114.114 811n1mmm T/2 119 193 265 298 491 703 959 1555 Fastener 8.18 12-14 T/1 432 703 753 1018 1452 Torpue 0ttppto T/3 120 19I 239 285 470 663 9t0 1�4 2287 in 148 241 311 357 565 826 1111 1798 14.14 T/1 511 849 885 11" 1764 M� Strength Fastener 1'.16 T/2 131 214 272 368 547 784- 1033 1653 8.18 T/2 294 496 560 740 1060 1078 Fastener TwmM (Inch. SMu T/3 1241 208 266 299 499 708 967 11474 20» Site IPowosl PDanasl. IP4etlsl tI}24 T/3 721 200 251 333 495 701 900 1375 2070 2672 to•16 T/2 312 aT8 589 B30 t206 t268 T/1 155 261 338 39D 649 908 1259 t9a9 t2.14 T/2 365 600 6- 898 1370 1758 2131 8•18 15ir 42 1000 12.14 T/2 156 243 283 375 605 8a81 118t 1855 259 352C 1-11 T13 730 1090 1210 1214 10.16 2100 61 1400 T/3 142 211 289 341 551 757 1063 1531 2420 2998 1016 T/3 728 1266 1540 1552 10-24 23W 65 1500 12.24 T/4 487 5% 913 1532 2441 3485 38a4 10.24 T/3 751 1208 1554 1694 TIE a87 699 973 t527 2207 3701 3999 12-14 2800 92 2000 T/1 208 329 428 562 800 .151 I 12-14 T/3 769 1358 1620 1970 1986 t2-Z4 3250 100 Zt00 1/4-t4 T/2 t66 265 3t4 a30 645 922 n52 4693 /4-t4 T/3 930 1aa2 2t00 258a 2650F T/3 ta1 231 293 346 513 NO 1145 1858 1 2406 a55C 5°33 1224 T/4 20481!4.1a385C 150 2600 7t40 225 27t 3Ti3 556 181 1005 1 1678 1 2542355a 1/4-2 1/4.20 T/a 554 788 tn5 t90.i l 2580 a297 14589 t2•Ta T/5 - 2720 275? 0 4215 t68 2700 Builder Engineering Report#547 •Note:An aooropnare safety hector should Je applied to the ultimate test value& Budder Eng,nesntp Report=s 583 a 583A '"THICKNESS RECOMMENDATIONS FOR TRAXX/TEKS* .NOMINAL SHEET SCREW STEEL. 500 ' soo SIZES `"GAUGES r n MATERIAL aoo 1 .: Common THICKNESS Thread Decimal Sheet steel Decimal IN INCHES 300 4 Diameter Equivalent Equivalent ', Gauges 250 2se :ssa Drill 25 capacities p8 210 ,`�216.-210 210 #6 .140 26 .018 may vary with 15 ■ special flute150 .100 .no no ■ � ':', ' TTs #7 .150 = 24 .024 1 x7 D90 n lengths. #8 .160 030 .° , ■ , . , , , D6o 100 110 o Tin 110 .110 AM #9 .180 20 .036 g 1 .035 .038 D35 m5 .035 `- #10 .190 #10 #12 1/4 #6 #8 #10 #12 #12 #6 #8 -10 #12 1/4 #12 1/4 #12 1/4 #12 #11 200 18 048 SCREW SIZES RAXX TEKS/2 TRaxx/2 TEKS/3 TRAXX/3 TEKS/4 TEKS/5 #12 .210 0 16 .060 FASTENER DESCRIPTION BREAKDOWN #13 .230 � 12 .1010 14 . 5 5 EXAMPLE: '/. .240 10 — 16 x 3/4 HWH TEKS/3 #14 .250 NOMINAL THREADS SCREW HEAD DRILL POINT 10 .134 SCREW SIZE PER INCH LENGTH STYLE TYPE DRILLING TECHNIOIlE BUILDEX TRAXX/TEKS ARE SELF-DRILLING initial drilling,enough pressure must be applied while keep- FASTENERS...THEY DRILL, TAP AND FASTEN ing the screwgun and fastener perpendicular to the work IN ONE OPERATION. surface to prevent angle driving or walking. Drilling must be completed before the threads engage the material.The A separate drilling operation is not necessary. However, correct fastener based upon the total thickness and type of specific installation procedures are necessary to insure material to be drilled and fastened for an application is very correct fastening results and to achieve published perfor- essential. Never overdrive the fasteners or install fasteners mance values for each fastener at an angle to the work surface,as this may significantly Important:A 1900 to 2500 RPM screwgun rated at 4 amps reduce product performance or lead to product failure. or higher,equipped with a properly adjusted depth-locating Contact Buildex Application Engineering Department toll- nosepiece, must be used for correct fastening results.During free at 800/323-0720,for any specific information necessary. A Prodrllled Top Material Hole Diameter Is latpsr Top Material to be Drilled •l I•than Screw Threads to he Drilled L— WW a Insulation Void or Insulaflan Dulled of Punched 100 Material L_ r— Bonpm Malatial Total Thickness Bottom Ma/etla/ Total Thickness Bottom Material - Total Thickness to be Drilled to be Drilled to be Drilled to Do Drilled to On Drilled to Do Drilled l Ra�sef Standard Velocity Fastening Systems i VA*HEAD DRIVE PINS W HEAD ORIVE PIN - Fasteners & S �"� 6"ll ark izes ...« U0101 tayl! w..1a. 1726' % 2327 M 2229 2w 2 'fir W-20 THREADED STUDS =0 Sri 3 It" 1746 3a1. 3t 1th +ri Mu I =7 (.1<tal.e wens Tles4 $fee" shot somww Lamm taps V'M* sweater, 240/• tut * "n EYEPIN 331 e• t'/1. tw rh 24= t i. M 3ti yu 33 J 1"h. 1 M 2401• 14L 1 46 •lu O _i 3318 2'h. 2 r, 2464• 2 1K sr Nis _ 3320 7'/.• 3w r� I 3601 1rh 1K It'. 3i1'-16 THREADED STUDS at 24V13 1% % HEAD DRIVE PINS I 24259 11h % T V. Nis 2429a ZY 1 IY. -M 2430a 2% 1V. 1W sh• Ltalq 9"Mil Tisrr4 art f 2431 3Y4 2 1Y. Hu ataip iewsll asr aai Number +s•�sd �n Wfs @' 'XnuAed Shank 1.Mr LMte laptlt La.attr 03t.Z6 2% f 3329 2Y. 2 "l.. a 343a• 2% 1 V. 1 Y. • 3330 Sri 3 4.. •3439 2'% 1 Y. 13h t 1311 1 ri 1 "Jr 341" 2% Y. 1 ri • 3335 +K ++t �f'• e ® Ustad <S>Approved I . 3336 149 I I 1737 2% 1 i **Available In Stemless Steel I i �4T Tensile & In Steel valu The values � es shown are for properly the steel and minimum fastener driven fasteners where the point of spacing artd edge distance re• ! Shear Values' the fastener aomptetely penetrates quirements are met i • Est st«I Mellonimam Maio IMe.ater resumes t L.) Teri'« Oar Ted« ear I Tussles now Tendon now el '1 slad44a 'hr 22�t 3538 2556 3538 ]2813 ILIA — — t• ri' 1556 4396 2e32 4396 1 2e16 3396 2483 t762 1164 4762 36ti0 47e2 — 11A ri 2928 1 5246 a3W 5966 et:'36 5966 — — 154' ri f V. 7108 9020 aSW 89 Ja S2e8 897t 76b 8974 1�Y ri llofea General 1. All values an aVerege ultimate loads try pounds.Industry standard is to apply a minimum factor o/salary 9/4c1 ow at a aultaole meriting load. i Specification Z reas/oTb sheaf values sm for-the fastener only weed steel of other mgraffole attached should be In.est/gated - arstelyIn accordance rllh secvptad design edtefts. - ' Powder-Actuated Fasteners— 2. Tests conducted In ASTU A•7 steel with smooth shank lastenert. 4 �i Fasteners shall be manufac- tured from AISI 1062 or AISi In Concrete moo•' 1065 steel, austempered to a The values shown are for properly where minimum fastener,spacing o do minimum COr@ hardness Of Installed fasteners driven to the and edge distance requirements �000g or o^ 4 cA .C 50-54 Rc and possess the fol- indicated penetration depths and are met. f(cp.o to/T+ lowing minimum properties: o.�e Tit 1 Tensile Strengths 270,000 psi a"'k 2fee yea tram frd.•r �' r ela.slar Matretlr $00 Shear Strength = 162,000 psi r14a err To— All fasteners shalt meet the r•1 1+••1 Tsa14s ierr T4rJw a..r T. lr nr. c requirements of Federal $ a- •t1. ' 1Z2 j4J6 ,fait 2/7x 1Tra 22ot 179x 3171 3•,i P Iv. t3aa nze t6.t xoze z3ze 2oet 2122 3s7e citfcations FF-P-3958 and , w1e teat 12sa zlzz tut 2sa6 19et we t. CO-Z-3258. Fasteners shall "/" 1v. ,site 2188 nu Z92e I 260+ t 3AI41 2310 1 3194 be as manufactured by Ram- I a.a lsae I11e 1714 12e0 t&AA /e71Z zssa 4, 1 set Fastening Systems, Divi- '1'• IV. 1525 221a 201 2532 2102 Zga4 3010 3310 siOn Ot Olin Corporation,275 1» 27" 29st so7a 3323 31s2 3952 31ze •+2+ 6. t Winchester Olin Ave., New 'I" 1w 31ee 417 157a 427r1 _Z a740 420A s2oa Haven, CT 0651 1 or K /w z6ao 2eao 24'a 3osa 29eo salt 3zze stez a. 1v 32so 3e7e sass 43oa .zoz .sa4 •2zx s13e approveC equal. Mau. ry y 1: 1. All r Iu arm••+••9•vlbn,ara bads/n .rude.Indust standard/s to 4000•m!n/mu/n hctor of arYst o/ I - rr.+st•awrrou..ora/ng lo4d. A. Inal A.—L'_.,..--�.-..r .1—a r rwnlur•.I en.nanaaA,r n a r!n e/T•a Installation Instructions Y :r!.bµ4=. .w�i� `. --ate:--�� �• . �"�� �''� 1�'-:`-,`' i'`y•t` r��`+�����•,c~:•j r•ass,c .tv "v.^t•_ >�: p.e-�t��.�Trrr^"..^.+•� mil.' � 5� Kwik Bolt Average Ultimate Tensile and Shear Loads'(Lbs) Concrete Strength I 2000 PSI ( 4000 PV I a000 pit blame or Emttedtnent Tension Sheer Tension 975 Sheer 1 Ua' 1 Tension Shear' 2 I � 165533 270� 612 � 23a9 ye. ft. I 2612 I' I �9 3350 2245 21rY 3075 I 107 3748 3900 I 5107 2810 I 6256 4W 3590 3792 48M 5419 I 5a00 6286 iR- 2v4' I 45a5 74.1•a 5510 Sala 6 - 9000 I $897 I 12300 I 10232 I 1533000 I t9 2Y 5410 71198 6600 It562 77C0 13500 4/R- 7000 71198 120M tt562 I t4500 t3500 71R- I 9000 I 113378 17000 I t5437 21Co0 15437 31/a' i at55 73257 10150 i t0860 18t02 7133 - I 16000 11700 I 13257 I 16500 I t7133 17800 i 18102 9 t5195 23500 t8a66 2SSp0 21009 t' 41R- j 14000 II II 1cow I II 2C500 II a3218200 t 23ss1 7t2 10' 200 3"91 i2 1Va' Stq' 1 IM5 I 4 94 36750 356a0 312CO25100 3984 34800 5t95 101rt 4963 409W 356ao � 4959881n- 35680 Atwuat 78 psi Strengtns z178 pat •Shear values are minimum mean values at each embedment baser a027 pat 6119 pat on failure across threaded section of the anchor. HKB-Kwik-Bolt Allowable Worsting Loads(Lbs.) Stainless Steel Kwik-Bolt-Allowable 2000 psi '! 4000 psi 6000 psi Working Loads(Lbs.) Anchor 3000 PSI Conerom Size Ertlttedment '�� Shaer I Tension Sheer I Tension Sheer Meteor ilntted. tla ilia 240 410 380 ago adp 800 SJu Oeptn Tension Sheer 2?12 570 ai0 870 850 820 600 Ua' t+e 320 I 550 34 15e sea 940 590 12 0 700 1570 �- I ISO! i 470 t070 21r2 770 940 970 t280 t110 1570 iR- 1 21/4 1 970 2290 41R 890 950 I 1200 1350 1350 '570 gy- 234 I tape V2 21/4 1140 ta60 1380 080 1710 23Q I 3t4p 314 1750 1880 2380 080 MM Dap y4' 3114 i 2010 I 4250 8 =0 2220 3070 25a0 I 3820 29W 1' dt 294 1 350 2800 I 1650 2890 1920 3370 R I 4060 6970 ttrt 1750 2800 3000 890 3020 337p 1114' I Sin 78t0' I 9960' 7114 'CiOfKrell ' 2250 3340 4250 3860 5250 38M engtn uses for t V4 Oia. .740 pal 3t► 3t/a Strength 5 29 0 3310 41 0 4 80 24400 4330 9 4000 3900 I 5870 4620 5900 5250 1 _I 4350 6S84400 7 541 4000 6720 512 8020 7 5860 8720 5860 8030 70 4550 8840 5860 8620 5860 9100 t 1I4 5.,2 4750 9190 5750 8920 TWO 1130p a111 9270 9960 I a650 8920 I i1100 1 1770 tOtR 6700 99W 10220 1920 11100 12400 Combined loading—combined loading should be calculated on straight tine reaction diagram of pure shear(Fs)and pure tension (Fr),teased on the interaction equation below. FS appld Fr applied Fs allowable Fr allowable 12 COLUMNS WITH COMBINED BENDING AND COMPRESSIO\' Input parameters : 4C16X2 . 25 v40721 .mdd Depth = 4 A' Kx = 1 Flange = 2 . 25 B ' Kv = 1 Lip = 1 . 055 C ' Kt = 1. Thickness = 0 .06 t Lx = 9 .75 Radius = 0 . 1875 R Ly = 9 .75 E = 29500 Lt = 9 .75 G = 11300 Fv, f_v = 55 P = 2 Mx = 0 . 00 Fu = 65 My = 0 +::r;rk;t;r:�<:r:��xw:t:r:�:r:t+*;rr:t:�•r;;t;�*t***:r:rrc �:<:t:r*;r:tt:r:tt*+:�t�::tt;:r�;*;t*:cx:t:t*x;t:t* tr:rw RESULTS. . . . . . . . . . . . . . . . Wind increase ? N Pa = 1 . 82 kips 4C18:X2 . 5 Ma = 7 . 10 kip-in Section will not work * (Eq. C5-1) = 1 . 10 <--Controls * (Eq. C5-2) = 0. 32 Group 1 * (Eq. C5-3) = 1 . 10 Case 1 ***Y:KYcyc;t Yc Yc::Yc 7:)C:Y*Yc Y::t*Jt;t 7:�;Y:yS::�c Yc*YC 7F*;'.'..';*7:y:*Y:7t f.yC Y;*�;'.'.'!:�:Ys�c+;7F 7:;t;ry;;c;-,,•YC:k*Yc 7k*;t*Y:;k�: COLUMNS WITH COMBINED BENDING AND COMPRESSION Input parameters : 4C16X2 .25 v40721 .mdd Depth = 4 A' Kx = 1 Flange = 2. 25 B ' Kv = 1 Lip = 1 . 055 C ' Kt = 1 Thickness = 0 . 06 t Lx = 9 .75 Radius = 0 . 1875 R Ly = 5 .00 E = 29500 Lt = 5 . 00 G = 11300 Fyefv_ = 55 P = 0 . 51 Mx = 6 . 06 Fu = 65 My = 0 *Y:Yc7;Yc Yc Y:it*Yc Y;:t Y:7C Y:Yc YC 9:Y:1c Yt is is�:�c�;*Pt is Yc*Y:Yt�:yt t�:�c �;*�C Yt Yc*�c Y.*7C YG�Yt 7C:k 7t k Yc*Yt Y:YC Y: :K Yk Y:X' *:✓. Y: +:YC Y: * RESULTS . . . . . . . . . . . . . . . . Wind increase ? N Pa = 7 . 85 kips 4C16X2 . 25 Ma = 20 . 65 kip-in Section will work (Eq. C5-1 ) = 0 . 32 (Eq. C5-2) = 0 . 19 Group 2 * (Eq. C5-3) = 0 . 36 <--Controls Case 1 COLUMNS WITH COMBINED BENDING; AND COMPRESSION Input parameters : 4C16X2 . 25 v40721 .mdd Death = 4 A' Kx = 1 Flange = 2 . 25 B ' Ky = 1 Lip = 1 . 055 C ' Kt = 1 Thickness = 0 . 06 t Lx = 9 .75 Radius = 0. 1875 R Ly = 5 . 00 E = 29500 Lt = 5 .00 G = 11300 Fy. fv_ = 55 P = 0 . 255 Mx = 12 . 12 Fu = 65 My = 0 * RESULTS. . . . . . . . . . . . . . . . Wind increase ? N * Pa = 7 . 85 kips 4C16K2 . 25 * Ma = 20 . 65 kip-in Section will work -• A (Fa . C5-1) = 0 . 53 (Eq. C5-2) = 0. 34 Group 2 (Ea . C5-3) = 0 .62 <--Controls Case 2 COLUMNS WITH COMBINED BENDING AND COMPRESSION Input parameters : 4C16Y2. 25 v40721 .mdd Death = 4 A' Kx = 1 Flange = 2 . 25 B ' Ky = 1 Lip = 1 . 055 C ' Kt = 1 Thickness = 0 . 06 t Lx = 9. 75 Radius = 0 . 1875 R Ly = 9 . 75 E = 29500 Lt = 9 . 75 G = 11300 Fy, fy = 55 P = 1 . 27 Mx = 1 . 34 F u = 65 My = 0 * RESULTS . . . . . . . . . . . . . . . . wind increase ? N * Pa = 3 . 39 kips 4C16Y2 . 25 Ma = 14 . 00 kip-in Section will work K * (Eq. C5-1) = 0. 46 <--Controls (Eq. C5-2 ) = 0 . 13 Group 3 (Eq. C5-3) = 0 . 47 Case I Y. .0 +:7k:K 7k 7k r .. Y. :K :K:K:KY: ;K*:K:K YC :K :K*+::t:K� *y:*Y: :t YC f:Y: �' ;k ;KW. :K YC:t:K it:K*:t:k�C Y.• :k* ** Y. �C!: t Y: !:*:k V:*:t ** 7t :t * ATTACHMENT NO. 6 Pacre J COLUMNS WITH COMBINED BENDING AND COMPRESSION Input parameters : 4C16X2 . 25 v40721 .mdd Deoth = 4 A Kx = 1 Flana_e = 2 . 25 B ' Kv = 1 Lip = 1 . 055 c" Kt = 1 Thickness = 0 . 06 t Lx = 9 . 75 Radius = 0 . 1875 R Lv = 9 . 75 E = 29500 Lt = 9 . 75 G = L1300 Fv, fv = 55 P = 0 . 635 Mx = 2 . 68 Fu = 65 My = 0 mow;.;W wwy;w;v;Yw W wW 7;RYC:.:K Y:W W:C Y:X:t."x:r(Y::k�:W kYC Y. ww�;;k R'w 7C�;:t Y:Y:Y:�c 1C Jt Y:YC�:7k 7:y:✓;q y ;v *;+;W W;k�W YC 7;Y.' RESULTS . . . . . . . . . . . . . . . . Wind increase •? N * Pa = 3 . 39 kips 4C16X2 . 25 n Ma = 14 - 00 kio-in Section will work w (Ea. C5-1 ) = 0 . 36 <--Controls (Ea. C5-2) = 0 . 12 GrouD 3 * (Ea. C5-3) = 0 . 38 Case 2 EXAMPLE CALCULATION Basic parameters and properties : r = 0 . 218 radius to the center of the material alpha = 1 . 000 ineffective area reduction factor a = 3 . 505 straight depth b = 1 . 755 straiaht flange c = 0 . 808 straight lip r u = 0 . 341 curve A = 0 . 600 Area a- = 3 . 940 depth cl to r_1 b- = 2 . 190 flange cl to cl c- = 1 . 025 lip cl to cl J = 0 . 001 St . Venant torsion constant Ix = 1 . 508 Moment of inertia about x-axis x- = 0 . 888 Distance from centroid of the section to Iv_ = 0 . 482 Moment of inertia about v-axis m = 1 . 371 Distance from shear center to centerline CW = 2 . 594 Warping Constant xo = -2 . 259 Distance from centroid to shear center rx = L . 586 Radius of avration . x-axis ry = 0 . 896 Radius of gyration, y-axis r() = 2 . 902 Radius of gyration , polar ro^2 = 8 . 422 Radius of gvration, polar, squared Beta - 0 . 394 Torsional-flexural constant CALCULATIONS BY MARK D. DUNCAN , P. E. ATTACHMENT NO. 6 Page 2 Compression capacity: Determination of Pa (Section C4) : Since the channel is singly symmetric. Fe sha71 be taken as the smal. of Fe calculated according_ to Section C4 .1 or Fe calculated accordin to Section C4 . 2 . Section C4 . 1 Fey = 17 .080 Fex = 53 . 4699329 (Fe) l = 17 . 080 Section C4 . 2 Thetaex = 53 . 470 Thetat = 12 . 531 (Fe) 2 = 10 . 855 Therefore Fe = 10 . 855 Fy/2 = 27 . 500 Fn = Fe 10 . 855 Determination of Ae : Flanges : d = 0. 808 Is = 0 . 003 D = 1 .055 w = 1 .755 DO = 0 . 601 S = 66 . 727 S/3 = 22 . 242 w/t = 29 . 250 Case II Ia = 0 . 000 n = 0 . 500 Is/Ia = 400 . 227 k = 36 .726 <= 5 .25-5 (D/W) = 2 . 2443 k = 2. 244 C2 = 1 . 000 C1 = 1 . 000 Lambda = 0 . 394 p = 1 . 121 b = w 1 . 755 SO = 29 . 250 Web: w = 3 . 505 w/t = 58 . 4166666 OR < 500 [Section Bl . l- (a) - (2) 1 k = 4 .000 (Since connected to two stiffening elemen CALCULATIONS BY MARK D. DUNCAN, P. E. ATTACHMENT NO. 6 Page 3 Lambda = 0 . 589 < 0 . 673 p = NA b = w 3 . 505 w/t = 58 . 417 Lips . d = 0 . 808 k = 0 . 4.30 (unstiffened compression element) do = d ' s (for simple lip stiffener) Lambda = 0 . 414 < 0. 673 p - NA ds ' =d = 0 . 808 do = d ' s (Is/Ia) <=d ' s 0 . 808 d/t = 13 . 458 < 60 (section B1 . l- (a) - (3) ) Since flanges , web, and lips are fully effective: Ae 0 . 600 Pn = 6 . 510 0 Die C:ac = i . 920 Pa = 3 . 391 kips Bending capacity: Members in bending, Section C3 Ma = Mn/Omegaf (Eq. C3 . 1-1) Mn = The smaller of : <=ScFy or (Ea. C3 . 1 . 1-1) <=ScMc/Sf (Eq. C3 . 1 . 2-1) Omegaf = 1 . 67 factor of safety for bending Sc = Elastic section modular of the effective section calculated with the extreme compression or tension fiber at Fy. Sf = Elastic section modular of the full unreduced sectio for the extreme compression fiber . St = I/y Sfx = 0 .754 in-3 Sfy = 0 . 542 in-3 Determine Sex @ f = Fy: Web i1 = 48 . 194 ksi Q _ -1 7 . 315 ksi. Si = -0 . 359 k = 11 .741 w/t = 58 . 417 Lambda = 0 . 725 CALCULATIONS BY MARK D. DUNCAN . P . E. ATTACHMENT NO. 6 Page 4 rho = 0 . 961 be = rhow = 3 . 368 in b1 = 1 .003 in b2 = 1 .684 in bl + b2 = 2 . 686 in be = 1 . 8192 b2 = 0 . 817 in Flanges S = 29 .644 S13 = 9 . 881 w/t = 29 . 250 Case II la = 0. 001 in^ 4 Is = 0 . 00263 in'4 Is/Ia = 1 .798 n = 0 . 500 C2 = 1 . 000 C1 = 1 . 000 D/w = 0 . 601 k = 2 . 863 but < 2 . 244 k = 2 . 244 Lambda = 0 . 887 rho = 0 . 848 b = rhow 1 . 488 in bl = 0 .744 in b2 = 0 .744 in Lips k = 0 . 430 w/t = 13 . 458 f = f3 = 48 . 194 ksi Lambda = 0 . 873 rho = 0 . 857 d ' s = rhow 0 . 692 in ds = 0 .692 Effective area: Ae = vcg = 2 . 067 from top fiber assumed L v I ' 1 Element Effective distance L_v L_v^ 2 about own Length from tors axis (in . - 3) (in . ) fiber (in . ) Tens . Flange 1 . 755 3 . 970 6 . 967 27 . 660 `.tens . Corners 0 . 683 3 . 891 2 . 657 10 . 340 CALCULATIONS BY MARK D. DUNCAN , P.E. ATTACHMENT NO. 6 Page 5 Tens. Lip 0 . 808 3 . 349 2 .704 9 . 055 0 . 044 Tens . Web 1 . 686 2 . 910 4 . 905 14 . 271 0 . 399 Comp. Web b2 0. 817 1 . 658 1 . 354 2 . 246 0. 045 Comp. Web b1 1 . 003 0 .749 0 .751 0 . 562 0 .084 Como. Corners 0 . 683 0 . 109 0.074 0 . 008 Comp. Flna . b2 0 .744 0 .030 0 . 022 0 . 001 Comp. Flna. bl 0 .744 0 . 030 0 . 022 0 . 001 Comp. Lip 0 . 692 0 . 594 0 . 411 0 . 244 0 . 028 sum 9 . 613 19 . 869 64 . 389 0 . 600 yca_+ = Lv_ /L 2 . 067 in. from top fiber I ' eff = Lv_ -2+I ' 1-Lyca-2 23 . 925 in. -3 Act Ieff = tI ' eft _ 1 . 435 Sec = Ietf/yca+ 0 . 695 in . '3 St = Ieff/ycQ- yca- = depth-ycg 1 . 933 Set = 0 .743 in. -3 Determine Scx @ f = Mc/St: f = 31 .017 ksi Web f1 = 27 .179 ksi E2 = 27 . 179 ksi Si = 1 .000 k = 4 . 000 W/t = 58 . 417 Lambda = 0 . 933 rho = 0 . 819 be = rhow = 2 . 872 in bl = 1 . 436 in b2 = 1 . 436 in bl + b2 = 2 . 872 in be = 1 .7525 b2 = 0 . 317 in Flanges S = 42 . 170 S13 = 14 . 057 W/t = 29 . 250 Case II la = 0 . 000 in" 4 Is = 0 . 003 in- 4 Is/Ia = 10 . 590 CALCULATIONS BY MARK D. DUNCAN , P . E. ATTACHMENT NO. 6 Page 6 n = 0 . 500 C2 = 1 . 000 C1 = 1 . 000 D/w = 0 . 601 k = 6 . 334 but < 2 . 244 k = 2 . 244 Lambda = 0 . 666 rho = 1 .000 b = rhow 1 . 755 in bl = 0 . 878 in b2 = 0 . 878 in Lips k = 0 . 430 w/t = 13 . 458 f = f3 = 27 . 179 ksi Lambda = 0 . 655 rho = 1 . 000 d ' s = rhow 0. 808 in ds = 0 . 808 Effective area: Ae = 0 . 667 CHECK vcg = 2 . 000 from top fiber assumed L v I ' i Element Effective distance Lv_ Lv'2 about own Length from top axis (in. -3) (in. ) fiber (in. ) Wens . Flange 1 . 755 3 . 970 6 . 967 27 .660 Tens . Corners 0. 683 3 . 891 2 . 657 10 . 340 Tens . Lip 0 . 808 3 . 349 2 .704 9 . 055 0 . 044 Tens . Web 1 .753 2. 876 5. 041 14 . 498 0 . 449 Comp. Web b2 0 . 317 1 . 842 0 . 583 1 . 074 0 . 003 Comp. Web bl 1 . 436 0 . 965 1 . 386 1 . 338 0 . 247 Comp. Corners 0 . 683 0 . 109 0 . 074 0 . 008 Comp. Fing. b2 0. 878 0 . 030 0 . 026 0 . 001 Coma. F1na . bl 0 . 878 0 . 030 0 . 026 0 . 001 Comp. :Lip 0 . 808 0 . 651 0 . 526 0 . 342 0 . 044 sum 9 . 996 19 . 992 64 . 318 0 . 786 vra+ = Lv/L 2 . 000 in . from top fiber I ' etf = L_v" 2+I ' 1-Lvcg- 2 25 . 120 in. " 3 CALCULATIONS BY MARK D. DUNCAN , P. E. ATTACHMENT NO. 6 Page 7 Act Ietf = tI ' eff 1 . 507 Scc = Ieff/ycg+ 0 .754 in. ' 3 St = Ieff/yca- ycg- = depth-ycg+ 2 . 000 Scr = 0 . 754 in. ^3 fc = My/Scc = 31 . 028 ksi ft = Mv_ /Sct 31 . 028 ksi Determine Mc : MY = S f Fv_ 41 . 463 kip-in Me = CbroA(ThetaeyThetat) ' . 5 Cb = 1 . 000 Thetaey = Pi "2E/ (KyLy/ry) '2 "17 . 080 Thetat = (GJ+ (Pi-2) ECw/ (KtLt) "2) ) /Aro'2 = 10 . 921 kip-in 'Ile = 23 .772 kin-in Me > 0 . 05Mv_ Mc = 23 . 383 kip-in Therefore: Mn <= 38 . 201 kip-in <= 23 . 375 kip-in Mn = 23 . 375 kip-in Ma = 13 . 997 kip-in 1 . 166 kin-ft Combined bending and compression: 1 >= P/Pa+CmxMx/MaxAlphax+CmyMy/Ma_yAlphay (Ea. C5-1 ) 1 >= P/Pao+Mx/Maio+My/Mayo (Ea. C5-2) ;when P/Pa <= 0 . 15 use: I >= P/Pa+Mx/Max+My/May (Eq. C_5-3) P/Pa = 0 . 187 Cmx, Cmv_ = 0 . 850 Alphax = 1- (OmcgacP/Pcr) Omega(-, = 1 . 920 CALCULATIONS BY MARK D. DUNCAN , P. E. ATTACHMENT NO. 6 Pape 8 Pcr = Pi-2EIb/ (KbLb) "2 = 32 .069 kips Alphax = 0 . 962 Pao = 14 . 026 kips Mx = 2 . 680 My = 0 . 000 Max = 13. 997 May = 0 . 000 Mateo = 38 . 201 kip-in Mayo = 0 . 000 (Eq. C5-1 ) = 0 . 356 <--Controls fEa . C5-21 = 0. 115 (Eq. C5-3) = 0 . 379 Compression capacity (Pao) : Fn = F_y 55 . 000 Determination of Ae : Flanges : d = 0 . 808 Is = 0 . 003 D = 1 . 055 w = 1 .755 D/w = 0 . 601 S = 29 . 644 S13 = 9 . 881 w/t = 29 . 250 Case II Ia = 0 . 001 n = 0 . 500 is/!a = 1 . 798 k = 2. 863 <= 5 . 25-5 (D/W) = 2. 2443 k = 2 .244 C2 = 1 . 000 C1 = 1 . 000 Lambda = 0 . 887 p = 0 . 848 b = pw = 1 . 488 w/t = 24 . 799 Web: w = 3 . 505 w/t = 58 . 4166666 OK < 500 (Section B3 . 1- (a) - 0) 1 k = 4 . 000 (Since connected to two stiffening_ elemen Lambda = 1 . 327 > 0 . 673 n = 0 . 629 b = pw CALCULATIONS BY MARK D . DUNCAN, P . E. ATTACHMENT NO. 6 Paae 9 2 . 204 w/r_ = 36 .729 Lips . d = 0 . 808 k = 0. 430 (unstiffened compression element) ds = d ' s (for simple li_o stiffener) Lambda = 0 . 932 oh shit a = 0 . 820 ds ' =d = 0 . 808 ds = d ' s (Ts/Ia) <=d ' s 0 . 808 d/t = 1:3 . 458 < 60 (section 81 . 1- (a) - (3) ) Calculate new Area: Ae = 0 . 490 Pn = 26 . 930 Omeaac = 1 . 920 Pa = 14 . 026 kips CALCULATIONS BY MARK D . DUNCAN . P . E. Q DIAPHRAGM STRENGTH CALCULATION per Steel Deck Institute 'DIAPHRAGM DESIGN MANUAL' (second edition) PANEL PROFILE: 29 ga. Norclad Panel Data: Panel Width- 36 .0000 (in. ) Rib Space- 9 .0000 (in_ ) Rib Depth 0 . 625,0 (in. ) Thickness- 0 .0162 (in. ) Minimum IY- 0 .0071 (i.n�!/ft. ) Dim. ' f ' - 0 .7500 (in. ) Dim. 'w' - 0 . 8000 (in . ) Dim. ' e ' - 3 .6250 (in- ) FASTENER DATA: Structural Stitch Diameter: No. 12 No. 8 Ult. Shear Strength: 557 lbs . 304 lbs . (Structural Fastener Shear Strength Calculated Per SDI Eqn. 4 . 5-1) (Stitch Fastener Shear Strength Calculated Per SDI Eqn. 4 . 5-2) FASTENER SPACING: Structural Stitch Diaphragm Edges : 60 .0000 in. o/c N/A Panel Sidelaps : N/A 60 . 0000 in. o/c Diaphragm Ends : 1 . 5000 in. N/A 10 . 5000 in. 19 . 5000 in. 28 . 5000 in. Int . Supports : 1 . 5000 in. N/A 10 . 5000 in- -' 19 . 5000 in. 28 . 5000 in. DIAPHRAGNI LENGTH: 10 .0000 feet INT. SUPPORT/PURLIN SPACING: 5 .0000 feet STRENGTH BASED ON EDGE FASTENERS : (SDI Eqn. 2. 2-2) With. Al = 1 . 0000 Su = (2k . + NpA2 + Ne) Qf/L A2 = 1.0000 Np = 1 = 167.10 plf Ne = 0 Qf = 557 lbs . L = 10 .0000 f t. *+t:tt!.:C*tt:l•tt****:l':l':t*:t*:t:C:t:ft:t:tY::t:!�7 *:t:t*ttt;✓tt+tt7•••v *a+,y;•+;t•ri.**y**tt<+t:t7t.+, ++r;- STRENGTH BASED ON INTERIOR P YELS : (SDI Eqn. 2 . 2-4a) With: A = 1 z = 1 - DL•v/ [240 (t) - .5 J = 0 .8977 B = NsAs -�- (1/W-2) (2Np*sumXp"2 + 4*sumXe"2) = 3 .1332 D = 0 .6250 in. L•v = 5 .0000 f t. t = 0 .0162 in. Ns = 2 .0000 Su = [2A (z - 1) + BJ Qf/L As = 0 .5458 W = 36.0000 in. = 163 .12 plf sumXP-2 = 441.00 sumZa'2. = 441.00 :t%tY::t:rt*tt+**:C*t+;.+;F!,:+:t:t:t.tt++! +;i;tt:ttt:ti*y•tt;t:' s+y;t;ta�•s**+tit*t+:titt*:t:t**•t�;;t*y;t;r++;.. .. STRENGTH BASED ON CORNER FASTENERS : (SDI Eqn. 2 . 2-5) With: Su = [ (N"2*B 2) / (L 2*v 2 + B 2) ] '0 . 5 N = 1. 3333 fas/ft 169 ..89 plf t*t:tt*******!,*+:';*ii•**:t*******+t:t++*.+.t'****t*****t.*****+*********t:t*'***i:*tt****- STRENGTH BASED ON SHEAR STABILITY: (SDI Eqn. 2 .4-2) With: Sc = [3250/Lv"2] (I-3*t"3*p/s) -0 . 25*l000 I = 0 . 0071 ia4/ft = 142 .07 plf p = 9 .0000 in. s = 2 (e + w) 3- f = 9 . 60 in. e = 3 .6250 in. w = 0 . 8000 in. f = 0 . 7500 in . 1 t at.t .tt .. .. .. :t;t:tt --t * t t*ti:t.t!' .. .. .. .r ..i. . . .�. rt*i• .0 !:tt .. .. 1 MINIMUM WORKING STRENGTH = 163 . 12/2 . 35 = 69 . 41 plf attar «t . «;. ..yt+. { ta y .. t . tt.t t.t:t is tk :k* t!: .ttt !'r. t !'t k.t i:tt Y. !' !' tt .. •`- i DIAPHRAGM STRENGTH CALCULATION per Steel Deck Institute ' DIAPHRAGM DESIGN MANUAL ' (second edition) PANEL PROFILE: 26 ga. SuperSpan Panel Data: Panel Width- 36 .0000 (in. ) Rib Space- 12 . 0000 (in. ) Rib Depth- 1 .2500 (in. ) Thickness- 0 . 0162 (in. ) Minimum IY- 0 . 0423 (in4/ft . ) Dim. ' f ' - 1 . 0000 (in. ) Dim. ' w' - 1. 8580 (in. ) Dim. ' e ' - 4 . 1250 (in. ) FASTENER DATA: Structural Stitch Diameter: No. 12 No. 8 Ult . Shear Strength: 557 lbs . 304 lbs . (Structural Fastener Shear Strength Calculated Per SDI Eqn. 4 . 5-1) (Stitch Fastener Shear Strength Calculated Per SDI Eqn. 4 . 5-2) FASTENER SPACING: Structural Stitch r ' -tphragm Edges : 60 .0000 in. o/c N/A _iel Sidelaps : N/A 30 . 0000 in. o/c Diaphragm Ends : 2 . 3750 in. N/A 14 . 3750 in. 26 . 3750 in. Int . Supports : 2 . 3750 in. N/A 14 . 3750 in. 26 . 3750 in. DIAPHRAGM! LENGTH: 15 . 0000 feet INT. SUPPORT/PURLIN SPACING: 5 . 0000 feet STRENGTH BASED ON EDGE FASTENERS : (SDI Eqn . 2 . 2-2) ch. Al = 0 .7674 Su = (2A1 - NPA2 Ne) Qf/L A2 = 0-.7674 Np = 2 = 113 . 98 plf Ne = 0 Qf = 557 lbs . L = 15.0000 ft . t*t t t t t t t t t t t t t**t t t*t t t******* STRENGTH BASED ON INTERIOR PANELS : (SDI Eqn. 2 . 2-4a) With: A = 1 z = 1 - DLv/ [240 (t) - . 51 = 0 .7954 B = NsAs - (1/W^2) (2Np*sumXp^2 + 4*suniXe-2) = 5 . 2958 D = 1 .2500 in. L-,,? = 5. 0000 ft . t = 0 .0162 in. Ns = 6 .0000 Su = [2A (z - 1) BI Qf/L As = 0 . 5458 W = 36 .0000 in. = 181 . 46 plf sumXP-2 = 327 . 42 sumXe-2 = 327 . 42 STRENGTH BASED ON CORNER FASTENERS : (SDI Eqn. 2 . 2-5) With: Su = ( (Ni-2tB-2) / (L-2tN^2 B^2) 1 ^0 . 5 t N = 1 .0000 fas/ft = 185 . 43 plf t***: x**�:t x t*t STRENGTH BASED ON SHEAR STABILITY: (SDI Eqn. 2 . 4-2) With: Sc = [3250/L%,^2] (I-3*t-3*p/s) -0 . 25t1000 I = 0 . 0423 in4/ft = 540 . 04 plf p = 12.0000 in. s = 2 (e + w) - f = 12 - 97 in. e = 4 . 1250 in. W = 1 . 8580 in. f = 1 . 0000 in . tt 1:t;k t :t t t Y .ttt .t t :t;k :k .lc :k t.t tAt 1 MINIMUM 14ORKING STRENGTH = 113 . 98/2 . 35 = 48 . 50 plf 1 A;t t *.'! *t t:t, t.t t* A,;t t ;t t .t.t.t t t t It t ? Al*:t tt*AA ;t :t :t .t ;t :t:t.k ?:* A, t*' :t :t.t TECH-FAST METAL SYSTEMS INC. STRUCTURAL CALCULATIONS FOR Nc 0 SAND HILL STORAGE, PHASE II 97 4 Kirk Chafe .o�o� �P�cr�xtio ww N.E. 3150 Highway 300 �SSInNAL E��l� Belfair, WA 98528 y EXPIRES: IT 1-7 PREPARE Y: MARK AN, P.E. j656des.xls Headquarters: 711 St. Helens, Suite 200 Tacoma,Washington 98402 253-572-4440 Fax: 253-572-6396 Tacoma 800-709-4440 Phoenix 800-695-1006 Houston 800-822-8628 02 DATA ENTRY SECTION PROJECT INFORMATION PRODUCT SELECTION CUSTOME Kirk Chafe 1 Roofing 1 SuperSpan ADDRESS:N.E. 3150 Highway 300 1 Siding 2 Norclad Belfair, WA 98528 2 Partitions 3 PBR PROJECT: SAND HILL STORAGE, PHASE II 7 Structural 4 U-Panel FILE NAME j656des.xls 10 Conc Anch. 5 MVB VERSION 81005.mdd 0 CMU (0/1) 6 WS-24 7 BHP Struct snow load: 25 psf BUILDING A 8 NCl/MBCI Struct live load: 20 psf width,ft 40 5/32x1 1/4.. 10 (stand: dead load: 2 psf length,ft 156 1/4x1 112... 11 (use for wind speed: 80 mph lat walls 520 .177x1 7/16. 12 (stand, lat. col. dist: 5 ft. Ing walls 156 long. col. dist: 12 ft. ***shear panel parameters ext. col. disc: 5 ft. Lateral panel length 20 ft. eave ht. 15.2 ft. Longitudinal panel length 12 ft. slope: 1 : 12 (one or 2 sides) 1 SS or DS: 2 (1/2) Roof Sheeting Length 20 ft. exposure: C B C D Siesmic Zone: 3 1 2A 2B 3 4 UBC Code 94 97 Na 1 GOVERNING CODES Uniform Building Code, (UBC) 1994 Edition = AISC Steel Construction Manual, 1988 Edition AISI Cold-Formed Steel Design Manual, 1986 Edition - SDI Diaphragm Design Manual, 2nd Edition MATERIAL SPECIFICATIONS -Purlins and columns, 4"and 6", 16 ga. and heavier to be: ASTM A446 Grade D, 55 ksi min. yield. -Columns, 2 1/2"and 4", 18 ga. and lighter to be: ASTM a446 GRADE A, 33 ksi min. yield. -Roofing, siding and partitions to be: ASTM A446 Grade E, 80 ksi min. yield. -Fasteners, as called out in drawings and details. DESIGN LOADS Snow Load = 25 psf(ground) Live Load = 20 psf Dead Load = 2 psf or actual loads Wind Load = 80 mph exp. C p = CeCggsl qs = 16.40 psf ht = 16.83 ft Ce = 1.06 1 = 1 Cq = 1.3 outward Cq = 0.7 upward p = 22.60� psf outward p = 12.17 psf upward Siesmic(1994) = Zone 3 V = ZICW/Rw Z = 0.3 1 = 1 C = 2.75 % = 0.00% Reduction factor for snow load over 30 psf. W = 2 psf Rw = 6 V = 0.3 psf 0.1375 *W i j 04 SUMMARY OF MATERIALS BUILDING A ROOF PANEL 26 ga SuperSpan or as noted below SIDING PANEL 26 ga SuperSpan or as noted below PARTITION PANELS 29 ga Norclad or as noted below ROOF PURLINS 6Z16x2.25 5.0 ft c/c RIDGE PULINS 4C16x2.25 HEADERS 4C16x2.25 G I RTS 4C 16x2.5 (25/80C/3) CONNECTIONS Center Span 2.03 kips Therefore use 4 TEKS End Span 1.62 kips Therefore use 3 TEKS Endwall 0.81 kips Therefore use 2 TEKS Sidewall 0.81 kips Therefore use 2 TEKS COLUMNS Use a 4C16X2.25 for all columns Group 1 Lby= 16.83 ft Lbx= 16.83 ft Case 1 P = 2.03 kips Group 2 Lby= 11.83 ft Lbx= 16.83 ft Case 1 P = 0.61 kips s M = 18.06 in-kips Case 2 P= 0.30 kips s M = 36.11 in-kips Group 3 Lby= 16.83 ft Lbx= 16.83 ft Case 1 P = 1.52 kips s M = 3.99 in-kips Case 2 P = 0.76 kips s M = 7.99 in-kips PARTITION PANELS Lat. interior 29 Ga. Norclad with 4 fasteners per support Long. interior 29 Ga. Norclad with 4 fasteners per support SIDING PANELS Endwalls 26 Ga. Superspan with 3 fasteners per support Sidewalls 26 Ga. Superspan with 3 fasteners per support ROOFING PANELS Lat. roof ' 26 Ga. Superspan with 3 fasteners per support Long. roof 26 Ga. Superspan with 3 fasteners per support BASE MEMBERS Remington Low-Velocity Powder-Actuated Fasteners, into 2500 psi con( Exterior Endwalls 9 in. on center 16 ga angle Exterior Sidewalls 11 in. on center 16 ga angle 3/8 X 2 1/2 exp bolts with Mullions 3 per mullion Jos ROOF PANEL 26 ga. T-0"wide SuperSpan panel (attachment#1 a) Fy=80 ksi Snow = 25 psf Span = 5 ft. Dead = 1 psf Capacity= 68 psf (based on 68 psf at 5 ft span) TOTAL 26 psf Therefore use 26 ga upe pan SIDING PANEL 26 ga. 3'-0"wide SuperSpan panel (attachment#1 a) Fy= 80 ksi Wind = 22.60 psf Span = 11.833 ft. Capacity= 90 psf (based on 90 psf at 5 ft span) Therefore use 26 ga SuperSpan PARTITION PANELS 29 ga. T-0"wide Norclad panel (attachment#2a) Fy= 80 ksi Load = 5 psf Span = 5 ft. Capacity= 14 psf (based on 14 psf at 5 ft span) Therefore use 29 ga Norclad ROOF PURLINS See attachments#3a and#4a for general properties Span = 12 ft. Space = 5 ft. Snow = 25 psf x 5 = 125 Dead = 2 psf x 5 = 10 TOTAL 135 plf Mss = wl^218 2.43 kip-ft Therefore use RIDGE PURLINS See attachments#3a and#4a for general properties Span = 12 ft. Space = 2.5 ft. Snow = 25 psf x 2.5 = 62.5 Dead = 2 psf x 2.5 = 5 TOTAL 67.5 plf Mss = wl^2/8 1.22 kip-ft Therefore use EAVE CHANNELS See attachments#4b for general properties Span = 10 ft. Space = 2.5 ft. Snow = 25 psf z 2.5 = 62.5 Dead = 0 psf x 2.5 = 0 Mss = wl112/8 --------- 0.78 kip-ft TOTAL 62.5 plf Sreq = M(12)/Fb 0.284 inA3 Eave channel and header to make up the eave member. 4" 16 ga eave channel = 0.053 inA3 4C16x2.25 = 0.346 inA3 Total 0.399 inA3 140.27% Therefore use 4C1 GIRTS Span = 5 ft. Trib = 8.42 ft. Wind = 22.60 psf w = 190.21 plf M = wl"2/8 = 0.59 kip-ft. Therefore use REACTIONS S CONNECTIONS WIND TO SNOW RATIO 1 Center Span Columns #12 TEK 3 Fastener from 16 ga to R = wl(1.25) 16 ga capacity(attachment#5) 2.03 kips ITherefore use , ultimate = 1620 Ibs allow = ult/2.5 End Span Columns = 648 Ibs R = wl 1.62 kips #12 TEK 3 Fastener from 14 ga to ITherefore use 3-TEKS 14 ga capacity (attachment#5) Endwall Columns ultimate = 1970 Ibs R = wl/2 allow = ult/2.5 0.81 kips = 788 Ibs ITherefore use #12 TEK 3 Fastener from 12 ga to Sidewall Columns 12 ga capacity (attachment#5) R = wl/2 0.81 kips ultimate = 1986 Ibs ITherefore-use 2 TEKS allow = ult/2.5 794 Ibs ti 10V COLUMNS Columns are divided into 3 groups: _ - 1) Interior columns taking roof load. 2) Exterior endwall columns taking wind and roof load. 3) Interior columns taking roof and partition load. Group#1 full snow load Pmax = 2.03 kips Lbx = 16.83 ft. Lby = 16.83 ft. Group#2 full wind load Pmax = 0.81 kips Mmax = wi^2/8 wind load Lbx = 16.83 ft. 48.03 kip-in Lby = 11.83 ft. With the 1.33 factor for wind and the load combination per UBC Section 2303(f): Case 1 P = 0.61 kips full snow/1.33 M = 18.06 kip-in 1/2 wind/1.33 Case 2 P = 0.30 kips 1/2 snow/1.33 M = 36.11 kip-in full wind/ 1.33 Group#3 5 psf partition load Pmax = 2.03 kips Lby = 16.83 ft. Mmax = wl^2/8 wind load Lbx = 16.83 ft. 10.63 kip-in With the 1.33 factor for wind and the load combination per UBC Section 2303(f): Case 1 P = 1.52 kips full snow/1.33 M = 3.99 kip-in 1/2 wind/ 1.33 Case 2 P = 0.76 kips 1/2 snow/1.33 M = 7.99 kip-in full wind/ 1.33 (Refer to attachment#6 for column analysis) Use a 4C1 6X2.25 for all columns 4 08 LATERAL ANALYSIS All of the partition walls and some of the exterior walls are acting as shear walls in accordance to SDI. With the areas being fairly small the tributary area method will be used to determine the lateral forces. Wind Loadina Lat. = 26735 Ibs <—CONTROLS Long. = 7232 Ibs <—CONTROLS Siesmic Loading Area increase due to overhanc = 1 Lat. = 858 Ibs Long. = 858 Ibs Shear walls (lateral) Lat. = 520 ft. Shear = 51.4 plf = 25.7 plf (for roof) For interior partition walls: (per attachment#7) 129 Ga. Norclad with asteners per support For exterior siding: 126 Ga. Superspan with asteners per support For roofing: 126 Ga. Superspan with asteners per support Shear walls (longitudinal) ' Long. = 156 ft. Shear = 46.4 pif For interior partition walls: (per attachment#7) 129 Ga. Norclad with asteners per support For exterior siding: 126 Ga. Superspan with asteners per support For roofing: 126 Ga. Superspan with asteners per support 09 BASE ANGLE ATTACHMENT (light gage) Exterior Endwalls Shear = 180.8 pif perpendicular to wall Shear = 51.4 pif parallel to wall Tens = 73.0 pif uplift Remington Low-Velocity Powder-Actuat 9 in. on center Exterior Sidewalls Shear = 171.4 pif perpendicular to wall Shear = 46.4 plf parallel to wall Tens = 36.5 pif uplift Remington Low-Velocity Powder-Actuat 11 in. on center Mullions Shear = 2169.5 Ibs perpendicular to wall Shear = 0.0 pif parallel to wall Tens = 365.1 lbs uplift 3/8 X 2 1/2 exp bolts with 3 per mullion Fastener capacities Remington Low-Velocity Powder-Actuated Fasteners, into 2500 psi concrete 0.144 x 1 1/4" TENS = 170Ibs allowable SHEAR = 195lbs allowable 3/8 dia x 2 1/2" emb expansion anchor into 2500 psi concrete TENS = 3281.0 Ibs ultimate SHEAR = 4087.0 Ibs ultimate Factor of safety= 4 TENS = 820.3 Ibs allowable SHEAR = 1021.8 Ibs allowable Fastener quantities 1 => (x^2+y^2)^.5/SHEAR+Tens/TENS 10 BASE ANGLE CAPACITY(light gage) Assumes that pin or expansion bolt is placed within 1"of the verticle leg of the angle or channel. Fy= 55 ksi Interior(lateral) Tens = 183 plf uplift Mact = 0.183 kip-in Fb = 0.75Fy(1.33) 54.863 ksi Sreq = 0.003 inA3 t = 0.041 in ere ore use a 16 ga angle Exterior Endwalls Tens = 73.013 plf uplift Mact = 0.073 kip-in Fb = 0.75Fy(1.33) 54.863 ksi Sreq = 0.001 inA3 t = 0.026 in ere ore use a 16 ga angle Exterior Sidewalls Tens = 56.498 plf uplift Mact = 0.056 kip-in Fb = 0.75Fy(1.33) 54.863 ksi Sreq = 0.001 inA3 t = 0.023 in ere ore use a 16 ga angle ii SLAB DESIGN Concentrated loading from roof columns. LL = 25 psf DL = 2 psf fc = 2500 psi Factored load Ft = 45.3 psf P = 3397.5lbs Try an unreinforced 4.00 in. thick slab. fr = 8*(2500)^1/2 400 psi Design strength = 360 psi Contact area, Ac = 10 inA2 Analysis per Nelson and Winter 9th Edition a = (Ac/pi)^1/2 1.78 in. h = 4 in. P = 3397.5lbs k = 250 Per equation 5.31 fb = (0.316P/hA2)(logh^3-4log((1.6aA2+hA2)^1/2-.675h) -logk+6.48) 321 psi < r therefore , use a 4.00 in. slab with ar under column lines to control cracking. use WWF 6x6xW1.4xW1.4 C centerline of slab 12 SUPER-SPAN .' Featuring —1/4" Zincalum6 11U4" • 12" Twice the Life! 36" ❑ Full 36"coverage. ❑ 1 1/4"deep trapezoidal ribs 12"O.C.for maximum strength. ❑ Full bearing rib at side-lap provides Super-Span'Section Properties consistent weather-resistant joint. WL S+ I+ I S- I- ❑ Available in a wide variety of attractive Gauge ObsInW* Wflt in'/ft in'/ft colors or bare ZincalumeO. ❑ Complementary trim and accessories 26 090 .0461 .0475 .0712 .0384 readily available. 24 1.16 .0667 .0656 .1058 .0540 ❑ UL580 Class 90 wind uplift rating- Construction#130, UL Building Materials Directory. BHP BHP Steel Building Products USA Inc. Sacramento-800.726.2721,916-372.6851 FAX 916-372.7606 Los Angeles-800-272-2466,909-823-0401 FAX 909-823-2625 Phoenix-800-55I-2062,602-598-1200 FAX 602-598-1219 Tacoma - 800-7334955,206-3834955 FAX 206-272-0791 Salem-800-272-7023,503-390-7174 FAX 503-390-7443 Spokane- 800-776-8771,509-535-0600 FAX 509-535-1346 Anchorage-80047&2727,907-349-2727 FAX 907-344-7095 Salt Lake City-$00-441-2477,801-978-0888 FAX 801-978-9099 13 SUPER-SPAN" Super-Span'Allowable Spans (ft-in) Loads(psf) ` Gauge Conditions 10 15 20 25 30-. 35 40 45 50 f 10-6 8-7 7-5 6-7 6-1 5-7 5-4 5-0 4-3 SS U180 7-6 6-7 6-0 5-6 5-2 4-11 ' 4_8 4-6 4-5 26 f 13-1 10-8 9-2 8-4 7-6 7-0 6.6 6-2 5-10 DS U180 10-1 8-10 8-0 7-5 7-0 6-7 6-4 6-1 5-10 f I3-5 10-11 9-6 8-6 7-8 7-1 6-8 6-4 6-0 TS U180 I 9-6 8-4 7-6 7-0 6-7 6-2 6-0 5-8 5-6 SS U180 18-50 7-4 6-7 6-2 5-0 I 5-6 I 54 5-1 14-10 24 f 13-7 11-1 9-7 8-7 7-10 7-2 6-10 6-5 6-1 DS U180 ( I1-2 1. 9-10 8-11 8-2 7-10 7-2 ! 6-10 6-5 6-1 f 13-8 13-7 9-8 8.8 7-11 74 6-10 6 6 6 1 TS I U180 110-6 110-6 8-5 7-10 7-3 6-11 6-7 16 5 6 1 Super-Span'Allowable Load (IbsJft.=) Span Gauge Condition T-O" I T-6" 4'-0" 4'-6'" 5'-0" L-6- 6'-0" T-6" T-0" 7'-6" 8'-0' 20 SS U180 ( 123 0 66 46 ( 34 I 25 20 15 1223 122 10 18 26 f 190 139 107 84 68 56 47 40 35 30 27 DS 11180 190 139 107 84 68 56 47 37 30 24 20 f 198 146 112 88 71 59 50 42 36 32 28 TS U180 198 146 112 88 68 51 39 31 25 20 17 f 129 95 72 57 46 38 32 27 24 21 18 SS U180 1129 95 72 57 46 35 27 21 17 14 11 24 f 204 150 115 91 74 61 51 44 38 33 29 DS 1/180 204 150 115 91 74 61 51 44 38 33 27 f 209 153 117 93 75 62 52 44 38 33 29 TS U180 1209 I 153 117 93 75 62 1 52 43 34 28 1 23 Notes- 0 Steel conforms to ASTM A792&A924 Grade 40 for 24 gauge and ASTM A792&A924Grade 80 for 26 gauge. 0 For wind loading,multiply allowable load values by 1.33 or allowable span values by 1.15. 0 Values based on the American Iron and Steel Institute(AISI)"Specifications for the Design of Cold-Rolled Steel Structural Members"(1986 edition,with 1989 Addendum). 0 Span/Load combinations to the right of the bold line apply to walls only. Loading Table Legend f-Load limited by flexural bending stress L-Span(Inches) 1/180-Load limited by a deflection of IA80 of the span SS-Single span L Support"TYP" DS-Double span I- ` TS-Triple span -''�. `^'� 40 BHP or More I— L L —i— L --- 1 BHP Steel Building Products Zincalume'is a registered trademark of BHP Steel(JLA)Pty Ltd USA Inc. 0 BHP Steel Building Products USA Inc. May 1996 Printed in USA Revision 5M (PS170) � . 14 NOR-CIAT)" Featuring ® I 36"Coverage I Zincalume Twice the Life! Full 36"coverage. Nor-Clad®Section Properties Weather-resistant lap system. wt. S+ 1+ S- I- Complementary trim and accessories readily Gauge (lbs/ftz) (in'/ft) I (ina/ft) (in'/ft) (in'/ft) available. 56 Available in a wide variety of attractive colors or bare 30 .54 .01 .00 .01 .00 Zincalume®. � 29 .62 .0132 2 .0072 .0144 .0067 26 .84 .0195 .0101 .0202 .0099 . �OBHP BHP Steel Building Products USA Inc. Sacramento- 800-726-2727,916-372-6851 FAX 916-372-7606 Los Angeles-800.272-2466,909-823-0401 FAX 909-823-2625 Phoenix-800-551-2062,602.598-1200 FAX 602-598-1219 Tacoma -800-7334955,206-3834955 FAX 206-272-0791 Salem-800-272-7023,503-390-7174 FAX 503-390-7443 Spokane- 800.776.8771.509.535.0600 FAX 509.535-1346 Anchorage-800478-2727,907.349-2727 FAX 907-344.7095 Salt Lake City-800.441-2477,801.978.0888 FAX 801-978-9099 V - NOR-CLAD" Nor-Clad' Allowable Load (ps f) ` Load/Span Table Span (ft-in) 2-0 2-6 1 3-0 1 3-6 1 4-0 4-6 5-0 f 70 I 45 31 I 23 17 ( 14 11 SS 11120 70 45 31 19 13 9 7 30 DS f 112 72 -50 IA20 I 112 72 50 37 Gauge 8 22 I 16 22 11 U120 113 72 50 ( 37 ( 27 9 13 SS f 80 51. 35 26 20 16 13 U120 I 80 I 5I 35 22 15 I 10 7 29 DS ( U120 Gauge I 131 I 84 58 ( 43 I 33 25 19 f 129 83 57 42 32 25 21 TS I U120 ( 129 83 57 42 30 21 15 SS U120 I 101 65 45 I 33 I 22 15 10 26 80 59 45 35 29 Gau e I DS ( f I 179 ( 115 115 80 I 59 45 I 35 27 U120 179 iI U120 1 163 105 73 I 53 ( 41 30 ( 22 1 Notes: ❑ Steel conforms to ASn,I A-9244-792(formerly ASTM A-792)Grade E(Fy-80 ksi)for 29 and 30 gauge and ASTM A 924/A-792(formerly ASTM A-792)Grade D(Fy-50 ksi)for 26 gauge. ❑ Values are based on the American Iron and Steel Institute(AISI)Specifications for the Design ofCold-Formed Steel Structural Afembers(1986 edition,with 1989 Addendum). ❑ For wind loading,multip!y allowable load values by 1.33. ❑ FOR SPANS TO THE RIGHT OF THE BOLD LINE,PLEASE cONTACT YOUR BHP STEEL BUILDING PRODUCTS REPRESENTATIVE. Loading Table Legend f-Load limited by flexural bending stress L-Span(Inches) Lh=-Load limited by deflection Support TYP SS-Single span �� L DS-Double span Tom-- L L span or More �� L �4 --' L or Moree L "I— �' BHP BHP Steel Building Products Zlncalume•Is a registered trademark of BHP Steel(JLA)Pry Ltd USA Inc. 0 BHP Steel Building Products USA Inc. September 1996 Printed in USA Revision (PS 163) 16 C & Z STRUCTURALSECTIONS Our structural sections bridge the gap between strength and economy BHP Steel Building Products' structural sections provide an economical,but superior answer to your struc- tural needs. Whatever your project or application,our structural sections stand ready to bridge the gap on a moments notice. ❑ Lengths up to 45 feet available. ❑ Detailing services available for lump sum bids. ❑ Full range of sizes. ❑ Professional sales representatives to respond to your ❑ Competitively priced. consulting needs. ❑ A variety of hole punching patterns. ❑ A complete line of accessories available. * BHP BHP Steel Building Products USA Inc. Sacramento- 800-726-2727,916-372-6851 FAX 916-372-7606 - Los Angeles-800-272-2466,909-823-0401 FAX 909-823.2625 Phoenix-800-551.2062,602-598-1200 FAX 602-598-1219 Tacoma -800.7334955,206-383.4955 FAX 206-272-0791 Salem-800-272-7023,503.390-7174 FAX 503-390.7443 Spokane- 800-776-8771,509-535.0600 FAX 509.535-1346 Anchorage-800478-2727,907-349-2727 FAX 907-344-7095 Salt Lake City-800-441.2477,801-978-0888 FAX 801.978.9099 17 G--& Z STRUCTURAL SECTIONS- 311�� C SECTION Z-ZAsis Y Y Axis(1n lsGauge t ew 1 S r 1 3 r s MW (1L� 4.) (W) M) (1n.') (1n•� (In.) - f- I 4 2.Z5 i6 60 5 0.0751 l AM 15849 .4821 3621 S964 14 0.075 .7406 I= AM 1.5746 5983 AS25 .8932 6 2.Z5 16 0.060 .6951 39 33 147 12M 217 5611 3792 A827 A 14 0.075 -M 4.8560 15846 23229 .6974 .4742 .3803 I6 U.060 .8151 7.7599 IB059 3.M% .6175 3895 WM 8 Z.25 14 0.075 I.0406 9 6 n Z3654 3.0320 .4691 .4872 8553 12 0.105 1.47W 13-Ml 3 3.0136 1.0648 6929 .8511 16 0.060 AN &SW 19502 3.0892 .9861 SI83 1.0467 8 2.75 14 0.075 1.1001 108302 25684 3.1028 1'=8 .6490 1.0451 13 0.090 13495 129219 32:67 3.0938 IAA .7809 1.0436 12 0AGS I-ToM 149863 3.7466 3.0847 1.7093 .9118 I.0418 I6 0.060 .3917 93305 2 0373 3.1175 1.4601 6602 1 2333 8 =5 14 0.075 11.1435 I2� 26777 3.1632 IM14 .3272 ( 12320 12 0.15 1.6637 ISM09 4.0841 3.1454 I 25437 1.1664 11301 16 0.060 8471 103031 2.0470 33834 .6?,00 2932 .3433 14 0.07-5 I.11Sb IZ3196 27942 33757 .7964 .4919 .3414 9 225 13 0.090 1-1%1 15351 3.4011 33610 9517 59(0 M96 12 0.15 15750 17.7611 39469 3.Ml 1.1047 .6897 .83ij 32-13 10 2.25 I 12 0.105 1.6910 ZZ9749 4-WO 3.6969 1.1423 I 69T4 43 10 325 14 0.07a 12879 3.6191 3.8,21 1.9575 I .8459 112042 / 12 0.15 18'i 12 MOM 55115 3.8559 17314 1.1902 1 2,2 14 0.075 1 12741 125.8456139566 1 43755 A625 Z020 .7993 12 2.25 12 1 0.105 1.8900 359288 5"1 43601 1.1979 .7042 I .7961 Section 1'rooerties Z SECTION Size EMCTTV! X-X Ajd3 ( Y-Y A)ds ! (in inches) Gauge t mmk ! I I S I r I S i r I s- s A I B I (Ia.) (La.:) ('in.') in. (La-) (1n•') (1n•) i (in.) I (1n.) I I 7 15708 .7917 111.6202 1 1.1117 I3008 113630 I013 4 2.25 1 1 6 0.060 53519952 .6126 I3 I4 0.075 .74 9 25971 I i16 .6935 4.0170 1I12364 23647 1.1117 5008 12440 1-5 6 A 6 I 2.25 I 14 I 0.075 .8902 4.9900 11.9392I 23587 13906 I .9285 112451 I 1.9648 (� ,Me T 16 0.060 3135 7.8967 1.3360 3.0690 1.1117 ' -008 1.1515 2.1414 i ' 3. 8 225 05 12 ( 0.1 5 11.46226 (3.6001 13:2.000 13.� 11.9477 � 11.1540 13.7187 16 0.060 .8374 8.76"3.I IA15 3.1Z32 1. 4 6520 1.4050 292^0 14 0.075 1.0651 11.0091I2.4331 3.132; 21188 8180 1.40. 3.6445 8 2.i5 13 0.090 13093 13.1362 3.0975 13.125I 2.6648 9851 1.4075 43.6 12 0.105 15676 152362 13.8091 3'1176 3.1093 1.1527 1.4084 5.0769 16 0.060 .8535 9.4r°.,4 18908 3.1440 2.6517 8235 1.6634 3.8218 8 325 14 0.075 1.1093 11MM 1 25282 13.I6a-9 133179 1.0328 1.6649 4.7672 12 0.105 15869 168767 3.7435 3.1761 4.6570 1.4565 1.6694 6.6475 16 0.060 .8451 10.4570 U750 3.4117 1.1117 5008 1.1124 2.4233 9 2 25 14 0.075 1.I152 13.0196 1 28541 3.4064 13906 .6285 1.1133 3.0233 13 0.090 13451 155411 3.4536 33991 1.6698 .7 1.1142 3.6209 I2 0.105 15676 18.0335 4.0074 33918 1.9477 S863 1.1147 4.2137 16 0.060 .8673 13.4ii7 22929 3.7492 1.1117 5008 1.0770 2.7052 10 2.25 14 0.075 1.1902 16.7667 33096 3.7427 13906 -=5 1.0779 33761 12 0.105 1.6730 232581 4.6516 13.7286 I 1 .9510 1 A78 1.0799 4.7136 l4 0.075 12310 I201928I33389 3M16 133179 1.0328 15695 6.0149 10 325 12 0.105 1.796Z 283911 5.0720 38834 4.6510 1.4546 1.5718 83924 12 225 14 0.075 12757 26.0959 4. 3870259 4.4016 113906 MM 1.0161 4.0818 12 0.105 1.8826 362465 6.0411 49 1.9477 M63 1.01 72 5.6985 Notes: ❑ Materials conform to ASTM A-9241A-653,Grade 50(Fym55 ksi minimum)with G60 galvanized coating,orASTM A 570 Grade 50(Fy-55 ksi minimum)bare or red oxide coating. ❑ Values based on the American Iron and Steel Institute(AISI)'Specification for the Design of Cold-Formed Steel Structural Members"(1986 edition,with 1989 Addendum). ❑ Ix-x pertains to deflection determination. ❑ Sx-x pertains to stress determination. ❑ Y-Y axis properties are for the full un-reduced section. BHP BHP Steel Building Products USA Inc. 0 BHP Steel Building Products USA Inc. March 1996 Printed in USA Revision SM (PS201) �. 18 TABLE 1: STRUCTURAL PROPERTIES OF STUDS, JOISTS, AND TRACK (CONTINUED) Girt & Strut (20HDS400 & 20HDS600) 20, 18, 16, and 14 "HDS" Punched C-Stud .325" for 20 GAUGE --� .433" for 18 be 16 GAUGE .461" for 14 GAUGE 1.250" 093" inside radius andohed 1-1/2olez for 3 1/Z' and r for 1-5larterdwebld Pth- depth Web Depth O.D. MEMBER MINIMUM WEIGHT FFFE TWESECIION TORSIONALSECIION DESIGNATION DESIGN (16dR) GROSS SECTION PROPE1tIIES PROPERTIES MOMENT PROPERTIES 'ITHCIQIFSS GIPACTrY (niche+) Area 1= Rx Iyy RJ Ix: Sx Ara Ma XO I J I Qv Ro 0 ni^2 in-d in ni^4 ni is^a ni^3 ia^ ni-lbs nil (ia^4 C. is 20HDS158 04346 0-523 0154 0.069 0.671 OD33 0.465 0.069 OD83 0151 1640 -1164 6140E-05 O.M 1.422 0330 20HD6250 OD346 0.625 0154 0.136 1.004 0.039 0.460 0.136 0144 0131 Z846 -ice 7349E-05 0.054 1.505 0.539 2OHDS350 OM46 0.743 0.219 0.406 1362 0.044 0.416 0.406 0= 0.215 4442 -0902 8.729E-05 0.109 1.693 0.716 20HDS358 OM46 0.7S8 0=3 OA41 IA05 0.0" 0.444 0."1 0136 0.220 4658 -0589 8902E-05 0113 1.721 0.733 2MD54W OM46 OZ02 0-236 0.556 1534 0D45 0.438 0.556 1 0170 0233 5327 -0.8.S3 I 9AZE-OS 0.147 1" 0.773 20HIMSO 0.0346 0.978 0.2M 1191 2D34 0.049 0A14 1.191 OA21 0=5 $326 -0.736 1149E-04 1 0301 1 L= OAM 2OHDS600 OM46 1D37 0-105 1.472 2.196 0D50 0.406 1A72 OA75 0.302 9440 -0.704 1118E-04 1 0367 7342 0.910 I8HDS250 0.0451 OM 0247 014S 0.994 O.0SS 0A73 0.245 0196 0.247 3868 -ID91 1.678E-04 OD85 1J50 0.505 18HDS350 0.0451 0994 0193 0J38 1357 0.062 0.461 0J38 0-1m 02" 6079 -0363 1984E-04 0.167 1.726 0.669 ISHDS358 0.04S3 1.013 0.293 0J85 1.401 0.063 0.459 0S85 0323 0299 6377 -0.950 2.022E-04 0.180 1.753 0.707 ISHDS400 0.0451 1.070 0315 0.739 1J31 OD6S 0.454 OJ39 0369 0315 7298 -0912 2137E-04 0.221 IM9 0.754 18HDS350 0.0451 1300 0383 1.597 2D36 0.071 0.431 1.587 0.577 0393 11405 -0.788 2.595E-04 0.444 2.226 0.875 IBHDS600 0.0451 1376 0A05 1.962 2-M 0.073 OA23 1.962 OA54 OAOS 12923 -0.754 2.748E-04 0.539 2364 0.398 I8HDS800 0.0451 1583 0A96 3.996 2.bb 0D73 0396 3.9% 0999 0.496 19740 -0446 3360E-04 ID30 I Z.939 1 0.952 16HDMSG 0.0566 1D44 0307 0301 0.989 OD67 OA65 0301 0140 0307 7200 -ID" 3133E-04 0.102 1.536 0.507 16HDS350 O.O566 1.236 0364 0.664 1350 0D76 0.456 0.664 0379 0364 11357 -0.952 3.887E-04 0.201 1.714 0.691 16HM58 0.0566 1?60 0371 0.721 1394 0.076 0.434 0.721 0398 0371 11917 -0.938 3.963E-04 0.217 1J41 0.709 16HDS400 0.0566 1332 0392 0.912 1-5 OD79 0.449 0.912 0.456 0392 13651 -0.900 4.189E-04 0.267 1226 0.757 16HDS550 0.0566 1.621 0.477 1.965 2.029 olm 0.425 1.965 0.714 0.477 21389 -0.777 5.096E-04 0.538 2.214 0.877 16HDS600 0.05M 1.717 0J06 2.430 2.192 OD88 0.418 2.430 0.810 0J06 24252 -0.7u 5398E-04 OA53 2353 0.900 16HDSSOO 0.0566 2101 0.619 4.959 2M1 OD94 0390 4.959 1.240 0.619 371M -OA37 6ATM-04 1151 2.923 0.953 16HDSI000 OM66 2A86 0.732 8.726 3A57 I O.M 0366 3.726 1.400 0.667 41930 -0J59 7316E-04 I 2076 3.S17 0.975 14HDS250 0.0713 1311 0-w 0371 0.980 0D83 0.465 0371 0.297 0386 88b1 -1.064 6.544E-04 0.130 IJ34 0.500 14HDO50 0D713 1.S54 OAS7 0.824 1J42 OD94 OA53 0.824 OA71 0A57 14099 -0.956 7.752E-04 0=3 1.709 0.667 14HDS358 0D713 1584 OA66 0396 1-w 0D95 0.451 0.896 0.494 0.466 14802 -0.942 7.903E-04 0272 1.736 0.705 14HDS400 0D713 1A75 0493 1.134 1.517 0.098 0.446 1.134 0.567 0.493 16979 -0.9M 8356E-04 OJ36 1.621 0.754 14HDS550 OM13 2D38 0.600 2.452 2=2 0.107 OA23 2.452 0.892 OAM 26696 -0.779 1.017E-03 OA73 2.208 0.875 14HDS600 OM13 7-159 OA36 3D36 Z18S 0.110 OA16 3.036 1.012 OA36 30296 -0.746 1.077E-03 OSIB 2346 0.399 14HDSWO 0.0713 2A43 0.779 6.208 2AU 0.117 0388 6.209 1.552 0.778 46471 -OS78 1319E-03 1365 2.921 0.952 14HDSI000 0.0713 3127 1 0.921 10.938 1 3.446 1 0.123 1 0365 1 10.938 1 2.198 1 0.921 1 65497 1 -0.5591 1.561E-03 1 2.5%1 3.5101 0.975 1715-P 4 � u 19 1-14 Dimensions and Properties for use with the 1996 AISI Cold—Formed Steel Specification M m Of N to f-- O M to to m to tT N to Q m N to O 'T r\ CD M M M r` co coM Q Q Q V' Q ITtl') M M Q Q n n co co N N N M n X 'C M Cl) M M M Q Q Q C: to to to In tD 10 tD to to 10 (D f- n n r"! P � ? qqq 444 � 4444 g444 g44q 4444 4 n m 0) tT O O N n m C>tT tD r` n CO M Q to to .- N M CO o rn rn M M Q OR m m m 0 0 0 0 tD tD Up to to to to to Q Q IT Q N M M M M M N N N N N N N N r- .- .- .- - - r- — ,- r — .- to Cl) to M to t0 to to co CO a) Cf O N CO m C1 O NM M to C Q Q .- r- .- tp tp tD tD Q Q Q Q N N N N to tb m q� t0 t0 tp t0 c? Q Q 0 0 0 tD t0 m to M M M M N N N N �- �- .- .- to t0 Q of M m N to to m m — r" N Q v Ct tD v Q U C m n M n M to Cf tD Q to to-M m t0 M .- m N O m t0 m t0 to Q to �- r- Q tT m t0 to Q M N N — r- — O T' — O O O O O O O N O O O O O O O O O 0 0 0 0 0 0 0 O O O O O O Cl) N _ O .- r- to to to .- tD M to M t0 N Q N co 01 to I, 1 tJt I, to to fl M Q_ rl M ._- M m to m Il to r- m N to r, to S_ v tD m Q it M N CD M M Q N r- M O m M O tD M O to O O O O O O 0 0 0 0 0 0 0 0 O O O O O O O O O E f o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 me o0 000 00oc 000c o000 0000 cc 00 0 aiU to C O N n to r M to n co CD Q to n of M tD m 0 M tD m 0 to M M to to m Qf C) CD Q to to to 0I a) m O N Cl) M M Q to C N N N N N N N N N M M M M M M M Q IT ITQ Q Q Q Q Q E O O O O O O O O O O O Cl O 0 0 0 0 O O O O O O O O 0 7 O Q n to to O m tT M m _Q t0 0 to r-- r- M N t` N_ m co L.L Q M to to Q m t\ f\ tD N N C- n '0 .0 t7f C) .0 co N O to Ix C N N N N N N N N N N N M M M Cl? M x O O O O O O O O O O O O O O O O O O O 0 0 O O O O O N tD t M Of N O_ N_ Q tD Q t0 m Cl T — M Q P. O N Cl) m m O N Q tD f` n m Of O Q Q c to c0 t` n r` r\ m m m m m O M Cl 0. I ( C N N N N N n M M N n M M (n M In M M M M M N CO M M CO x Ix 2 Z? 00 coo ClO O O 0 0 0 0 00 O O O O O O 00 00 C, V1 I to O T to n O coO n (ntD t0 O m 0 to. O N c Cf t M t0 C to M N to N N co M O N M C) O co a) O m r` co n coto t0 to -,r (0 to 'r M cc L) Q M tD Q M M t0 IT M M to Q M N to M C O O O O O C, O O O O CD O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 m M O m � to n Q m to f- N N to to CO r- Cl to LntD t0 n CO N Q v co CDN m t` M co to to Q N N M M co O n tD r` O 'IT Q to m f\ t0 r` to Q to to Q Cl t0 Ln Q M to c co M to Q Cl N to Q M N to C O O O O O O O O O 0 0 0 0 0 0 0 0 O O O O O O O O O 00 00 0 O O O O O O O O 00 O O O O O O O O O O O x to t0 f` r 0f to to to r- m m M O O N Q Q M to tD t` r` m(0 to c rn a M M CO II- r� rn r- pi c, rn C) Q to to to M N li CO rn co n M M co N N N N .- — r .-- .- .- — r — .- .- — — — — — p Xx t0 t0 M Q m 0 to to tO m N m N to to t0 M to Q c n to to O I,. m to N M O m M Q Cl N O O N tO tD to y C1J C O M Ln N M +- m t0 n CO Q M Q ("') M N Q c7 N N co N N N may 'x I N N r r 0 0 O O O O O O O O O O O O 0 0 0 0 O W i.L ¢ O O tp Q Q M ,^ m M C/ N m L x C tT m O to M Q � Q 7 N I� f� f` Q1 M O O r\ to tD to M — to — t0 tD r` m N Q Q to n n M O tT r- tD Q r` to Q Cl) Q M n N Cl) to N tT I` tD to Q M CV N ,•- O O O O O O O O O O O O O CL O — M Cl) Q f` to _ O to L ,� N to Q to t` to m N. N to C) m N M O to Q t` t` to to O N M I .ice . _ Q I- pr Cl) m Q cI to N m e Ct N CA h M -- m to N O m t0 M N N N - N r r r .- .- O r 0 0 0 0 0 0 O tD O Q to O N O M Q tT CO CO M O (M N to CO .; I\ t0 to Q 1'. C) C) co pf to N m co to Q M Q n n to cor O N to 0)t0 0) n m M O m m t0 to P Ln M to Q M N Q M N N Q M N N M N N M < - 0 0 0 0 coo 0 o 0 0 0 0 0 0 0 cc 00 0 0 0 C. 0 O O to to to U') o to to to to to to t to to to to to to to to to to to to to to to U)'� c c m_ mmm _mmmm mm_ mm mmmm mmmm m __ mmm m t� m_00 000 0000 0000 0000 0000 0000 0 � d c N Cl) tD E r` n to n to to to to to I. to to h to to V) to to n 0 CD a C, r� to Q Cl) 0 n Q M n to Q M C) 0 n to Q M n � o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U 00 600 0000 0000 0000 0000 0000 0 0 o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 to to to to to to to to to to to to to to to to to to to to to to to to to to M C N � N N N Cj Cj N N N N N � N O O O O O O CD O O O O O 0 C. 0 C) 0 0 O C:) O O C) O O t O C) O O O C) O C, C, 0 0 C. 0 O O O C) C) O O O O O O O O O C O O 0 0 0 0 0 0 0 to to to to 0 0 0 0 to to to to O O O O Ln N N O O O co m m m to to to to Q Q -T Q M M M Cl) M M Cl) Cl) N N n Ln Lnkn n to to tin c M Ln n to to n LO v c rl to to 00 000 ^ tnQM 0000 r. tnQM o 0 00 t` m QM 1 x x x x x o00o x x x x o00o x x x x o000 0x to In to to to x x x x to to to to x x x x to to to to x x x x to N N N N N to to to . N N N N to to to to N N N N C, Ln LO L N _ _ _ N N N N N N N N N N N N D > > D U U U U > > > > UUUU > > > > U U U U U U U U U U N U, U.) to U U U U to to to to U U U U to j CM C) C) O to uD to to to to to to Q Q Q Q M M M 11 Cl) Cl) M M N Y O �DATA - ATLAS TECHNICAL. j _ 20 . �CtIANI,CAL P1tOPEJITIES DIMENSIONAL PROPERTIES A Minimum Tensile StTf�rtQfh: 3000 lbs. r1-Necd•Across Flats: - 30S"-.312 PLATED STEEL' Minimum Torslanai Strength: N In-Ibs. fl -MaJcr Dlcmeter:___ _ Z =' minimumS earStren the zo2stbs- c-5 ie 3� Q oF�°r' ,01543In4' C"' _._.SELF•DRILLINC1 _ — - PULL-OUT STRENGTH NOT SUGGESTED PRE-DRILL: L REQ0. _ � 2800 LBS. (;=i:,c '�.iff:>ii it Naei:':f is ,:;,eF :::1! '«S N!•'.;t`>t' ,.. tfa.7[ .S>° .>_. .iae% ifA1• 3r)i :Jl. 26CC LSO. 24CO LBS. • ..� �i"i> 'li=tlf{;'f i�f•i i•'>•:2s :i:FiTa Fifi:it::141L;1;�' . a_;r. t>y{�2 j 'i.•t s{rI,ri�p:�.'��)'� ' .s"`r.? >w;;s?1'ii,:.,s�.f sff.{.:f:17f3 rt.;F>.._;r>ii=loft>i�Fll.t<j jtii'•s<>.{: 3,jt'r >aE _ :•s,t,�{. EXPECTED ;�. ; r,-�•;,: _ > ;r !.» t :):__.-: ){:try.:. �,f3 i .;.. 2200 185, , PULL-OUT 2000 LBS. STRE .,y^: .F�•M1fjt•f`�f: �f. flf':, "u��Ei hffa.", ,.> n :lf>,<> ..=a'1� rr C FROM 18C0 LB • . •lA8 TEST -. .. . �'' f;f ..i.••�:.�::;-. .,�`:�,.. { �. PER . LBS. ;n:?s:.�y:y Ca:: w,y� :(; '2�fs: ):�.�.•.1.:• y.t.a�`. >.' :f):).�';?. eis�si::•�:�::�s 3kfif� SPEClFlE17 • , t :t{ [ r: _ `•J•:t ;` 3 a,:=l.r '•..:`,;is;;.s tf`3.4 xtll TEST Pt AATE 'fr��i;;:ier. }?3:)s 3:.'. f ti).t,s.;>s s ` ..t `,.' l h.. ,..:,...iF:'fF) ,•i" 1400 LES. r' THJCrCNE�S _ _ 1;. 4200 LBS, ''iri�::<.._ E>+li ,�f •:�f J:. i Jti,.>.� .tY7"f r ra,rE? Y4 + iix;;ctMpg `Z is {i k'33 rfi^!?iisjt%='�Ysi{Lt>!ftr >s Zf x 2LfTf ri.e. fx s f•L7 f If`",'i s.:�h•. 4000 LES• f j(;.d {>I.-, ivvt i fj3iUi. ptt?:'s;sYsr.{'..t..+,ts t„•i.,t s .itr fBY;+:- , n 800 LBS, �7V'8.5 Rt) fl,'Mi'1s - s i+Zac+ie. s)tiiifs � rR;tN - f sr '• 4 ,�jlri s,: i3�i• tn.!tjs� •;f' fr>e sot," ot," Lr'1(1 p :a .:.aa, 1' :n: si, i;:•t i:i s>, 3-s 1'>1"s;x:. ' ii: 600.LES.L t.::tG:)f<• h•;tsr,;:. Ys 's''?ff=xp J••''.F a•'.t,'!r� "S 73rygf�') d.. ..� � �..'.� t i:5i • ��.f 'fiuT1„::ta>,.''J)R{te:' ... xY��i{ "3f>n 1>'{.. 111i:,, :_• • aao LBS. Cf{NES�: � � � .� o c � � a PL/�I E T HI ! Ot- O O O GAUGE Zt 24 20 48" 'ib 14 13 1Z 11 s0 REFEREJNCE GAUGE PULL-OVER STRENGTH .050" ',HASHER r 5I8' TYPE 20 CONTROL .030" • DRIVE 22 � � � � I 2e. I ,020„ 26 BONDED ono" S g g $ g S POUNDS RECOMMENDED DRIVING TOGIS NOTES " 2500 apr/t elociric !Crew 91:n.viltr; Denofe{ actual lab tell results and shalt be consldorod overa•;e Performance _ For optimum sesow and washar Performance. seating torque of loth in ibt is suCGe=led Gvgfrjrnd sensing O{str, �pief a to prevent — Drill sizes shown are approximate•e Variation eni%leollollardness or other factors moy 2 requite ad►usirnonr In mill size Io p G G ' j ; .21 AISI Specification Provisions for Screw Connections (Reference CUSS Technical Bulletin Vol.2,No. 1 February 1993) ( 4 HWH Plated Steel Self-0riling Screw Minimum Tension Strength 3000 lbs(Ref.Atlas Technical Data) Panel to Framing Fastening Capacity: E4.4.1 Pull-Out(16ga Framing): E4.4.1 Pull-Out(18ga Framing): Fa= 67.5 ksi(tensile strength of top framing member) F,;*- 55 ksi(tensile strength of top framing member) d= 0.212 in(nominal diameter of#12 self drilling scew) d= 0.212 in(nominal diameter of#12 self drilling scew) t,= 0.060 in(thickness of top framing member, 16ga) t c= 0.048 in(thickness of top framing member, 18ga) P,,,,= 0.85 t,d Fa= 0.730 kips P,,,t= 0.85 t,d F„2= 0.476 kips (Check that Tensile Capacity, 3000 lbs >1.25 P,,,,= 912 lbs OAK (Check that Tensile Capacity,3000 lbs >125 P,,,,= 595 lbs OK) E4.4.1 Pull-Out(20ga Framing): F 2= 45 ksi(tensile strength of top framing member) d= 0.212 in(nominal diameter of#12 self drilling scew) t,= 0.035 in(thickness of top framing member,20ga) P,,,,= 0.85 t�d Fa= 0.281 kips (Check that Tensile Capacity, 3000 lbs >1.25 P,,,,= 351 lbs OK) .2 Pull-Over(26ga Panel): F.,= 82 ksi(tensile strength of panel) d= 0.5 in(Max allowable metal gasketed washer dia.) t, = 0.018 in(thickness of top panel) P,,,,,= 1.5 t, dH,F,,, = 2.214 kips (Check that Tensile Capacity, 3000 lbs > 1.25 P,,,,,= 2768 lbs OAK Increased 4/3 for wind loading: Allowable 26ga Panel to 16ga Framing Load = 243 lbs(FS=3) 324 lbs Allowable 26ga Panel to 18ga Framing Load = 159 lbs(FS=3) 211 lbs Allowable 26ga Panel to 20ga Framing.Load = 94 lbs(FS=3) 125 lbs 22 AISI Specification Provisions for Screw Connections (Reference CCFSS Technical Bulletin Vol.2.No. 1 February 1993) 1 '4 HWH Plated Steel Self-Driiing Screw Minimum Shear Strength = 2025 Ibs(Ref.Atlas Technical Data) Framing to Framing Fastening Capacity: E4.3.1 Connection Shear(16ga/16ga Framing): E4.3.1 Connection Shear(16ga/18ga Framing): Fn, = 67.5 ksi(tensile strength of top framing member) F,,,= 67.5 ksi(tensile strength of top framing member) Fa= 67.5 ksi(tensile strength of bottom framing member) F„2= 55 ksi(tensile strength of bottom framing member) d= 0.212 in(nominal diameter of#12 self drilling scew) d= 0.212 in(nominal diameter of T12 self drilling scew) t, = 0.060 in(thickness of top framing member, 16ga) t, = 0.060 in(thickness of top framing member, 16ga) t2= 0.060 in(thickness of bottom framing member, 16ga) t2= 0.048 in (thickness of bottom framing member, 18ga) t2/11 = 1.0 <= 1.0 t2/t, = 0.8 <= 1.0 Pns= 4.2(t23 d)12 F., = 1.918 kips (CONTROLS) Pn,= 4.2(t2'd)'2 Fi2 = 1.119 kips (CONTROLS) Pns= 2.7 tt d F,,, = 2.31822 kips Pns= 2.7 t, d Fn, = 2.31822 kips Pns= 2.7 t2 d F 2 = 2.31822 kips Pns= 2.7 t2 d F 2 = 1.511 kips Alowable Shear 16ga/16ga= 639 Ibs (FS=3) Alowable Shear 16ga/18ga= 373 Ibs (FS=3) (Shear capacity 2025 Ibs < 1.25 Pns= 2398 Ibs) (Shear capacity 2025 Ibs > 1.25 Pns = 1398 Ibs (Therefore Allowable Shear Capacity= 540 Ibs (FS=3)) E4.3.1 Connection Shear(18ga/18ga Framing): E4.3.1 Connection Shear(20ga/18ga Framing): •, = 55 ksi(tensile strength of top framing member) F., = 45 ksi(tensile strength of top framing member) = 55 ksi(tensile strength of bottom framing member) Fa= 55 ksi(tensile strength of bottom framing member) d= 0.212 in (nominal diameter of#12 self drilling scew) d= 0.212 in (nominal diameter of 912 self drilling scew) t, = 0.048 in(thickness of top framing member, 18ga) t, = 0.035 in(thickness of top framing member,20ga) t2= 0.048 in (thickness of bottom framing member, 18ga) t2= 0.048 in (thickness of bottom framing member, 18ga) t2/t, = 1.0 <= 1.0 1.0< t2/t, = 1.4 <2.5 Pn,= 4.2(t23 d)12 Fa = 1.119 kips (CONTROLS) Pns= 4.2(t2'd)12 F„2 = 1.119 kips Pns= 2.7 t, d Fo = 1.51114 kips Pns= 2.7 t, d F,,, = 0.89123 kips (CONTROLS) Pns= 2.7 t2 d F 2 = 1.51114 kips Pns= 2.7 t2 d F 2 = 1.51114 kips Alowable Shear 18ga/18ga= 373 Ibs(FS=3) Alowable Shear 20ga/18ga= 297 lbs (FS=3) (Shear capacity 2025 Ibs> 1.25 Pn, = 1398 Ibs OK) (Shear capacity 2025 Ibs> 1.25 Pns= 1114 Ibs 23 1C80 Evaluation Service, Inc. S360 WORKMAN MILL ROAD • WHITTIER,CALIFORNIA 90601-2299 (� -►-_ , Asubsidiarycorporadon of the International Conference of Building Officials -,EVALUATION-REPORT SUPPLEMENT ER-1821 Copyright 0 1997 K30 Evaluation Serviee:Ins June 1, 1996 Filing Category:FASTENERS—Concrete and Masonry Anchors (066) WEJ-ITANCHOR BOLTANO N.FINDINGS ANKR-TITE STUD ANCHOR That the Wej-t1<Anchor Batt and ANKH-TITS Stud Anchor described in WF 1-tT this report comply with the 1994 Uniform Building Code,'" subject to 2415 EAST 1=1 PLACE the following conditions: TULSA,OKLAHOMA 74104-4414 1 through 7.No change. I.SUBJECT 8. Use of electroplated or mechanically plated carbon steel an- Wej-it Anchor Soft and ANKR-TITE Stud Anchor(issued December 1, chom is limited to dry,interior locations.Use of hot-dipped gal- be use vaaized cachou steel or stainless steel anchors Is permitted in Add a finding clarifying the location where expansion anchors can exterior-exposure or damp environments, if the master report be used. specifically recognizes these types of anchors- II.DESCRIPTION 9. Use of anchors in resisting earthquake or wind loads is beyond the scope of this report. No change. Unless specifically noted in this report supplement,the master re- port remains valid and unchanged. III.EVIDENCE SUBMITTED This report expires concurrently with the master report issued June No change. 1, 1996. Evaluation reports of ICBO Evaluation Service,Inc,are issued solely to provide information to Chat A member of ICBO,UdLEdng the code upon which the reporr is bared Evaluation reports are not to be construed as representing aesthetics or any other attributes not specifically addressed nor as an endorsement or recommen- datioa for use of the subject report This report is based upon Independent tests or other technical data submitted by the applicant.The ICBO Evaltadon Service,lac.,technical staff has reviewed thr test results and/or other data,but does not possess test faeilL*s to make an Independent verificadom There Is no warranty by IC30 Evaluation Service,Inc.,eraress or implied as to any"Finding"or other matter in the report or as to any product covered by the report This disclaimer includet but is not limited to,merchantability. Page 1 of 1 _ °�.='� ICBO Evaluation Service, Inc. J f 24 5360 WORKMAN MILL ROAD - WHITTiER, CALIFORNIA 90601-2299 A subsidiary corporation o>:the 'International Conference of Building Officials EVALUATION REPORT ER-1821 Copyright m 1996 ICSO Evaluation Service,Inc. Reissued June 1, 1996 Filing Category: FASTENERS—Concrete and Masonry Anchors (066) WEJ-IT ANCHOR BOLT AND ANKR-TITE STUD ANCHOR b.Ring:The ring is manufactured from ASTM A 108 carbon steel,Grade WEJ-IT 1008, or 304 stainless steel. 2415 EAST 13TH PLACE c.Washer.The washer is USS Grade 2 carbon steel or 304 stainless TULSA, OKLAHOMA 74104-4414 steel. I.Subject:Wei-it Anchor Bait and ANKR-TITS Stud Anchor 0,Design:Allowable static shear and tension loads are described in ap- plicable tables.Allowable loads for anchors subjected to combined shear II. Description:A. General:The anchors are expansion types. Use is and tension are determined by the following equation: limited to installation in uncracked, normal-weight concrete. (ps/pt)-5,3+(VSN) < 1 S.Wei-it Anchor Bolt:1. General:The bolt is designed for structural where: connections to concrete.The expansion bolt has two wedges located at Ps = Applied tension load. opposite sides of the bolt shank.Inclined planes are cut into the bait shank to form wedge packets, resulting in a uniform overall bait cross section Pr = Allowable tension load. for placing the anchor before the wedges are expanded. Vs = Applied shear load. 2. Installation:A hole is drilled perpendicular to the surface into un- Vt = Allowable shear load. cracked, normal-weight concrete, using drill bits that must comply with The anchors cannot be subjected to vibratory loads such as those ANSI 8 94.12-1977.The concrete thickness must be at least 1.5 times the created by reciprocating engines, crane loads and moving loads due to hole depth.Hole depth must equal the anchor length.To clean the hole, vehicles. compressed air and a wire brush are used.The anchor is installed in a pre- Use of anchors in resisting earthquake or wind loads is beyond the drilled bolt hole having the same diameter as the anchor.As the bolt is scope of this report.The allowable load values indicated in the tables are tightened three to five turns past the hand-tight position,the wedges re- maximum values and may not be increased for duration of loads such as main stationary and the bolt shank withdraws,forcing the wedges against wind or seismic loads. 7. the sides of the predrilled hole.See Table 1 for allowable loads,edge dis- E.Special Inspection:When continuous special inspection is required tances,spacings and minimum embedment depth. as noted in the tables,compliance with Section 1701 of the code is neces- 3. Materials: sary. For the Wei-it and AIUKR-TITE stud anchors,the special inspector a.Stud:The stud is formed from ASTM A 108 steel,Grade 12L14. must be on the jobsite continuously during anchor installation to verify b. Washer and Wedge:These components are formed from ASTM A anchor type, anchor dimensions, concrete type, concrete compressive 108 carbon steel,Grade 1008. strength, hale dimensions,anchor spacings,edge distances,slab thick- ness,anchor embedment and tightening torque. c.Wire:The wire is formed from MB 227 spring steel. F.Identification:The package or box containing the anchors is labeled d.Nut:The nut is ASTM A 563 carbon steel, Grade 04. with the anchor diameter, length and type, along with company name, C.ANKR-TITE Stud Anchor.1.General:The expansion ring-type stud (Wej-it) and name of the quality control agency (United States Testing anchor is designed for making structural connections to concrete.The Company).The Wei-it sleeve anchor has"Wei-it"and the size designation ANKR-TITE has an expansion ring crimped around the reduced diameter stamped on the expansion sleeve. The expansion sleeve on the Wej-it of the stud. sleeve anchor and the expansion ring on the ANKR-TITE are passivated with blue-dyed chromate for identification. 2. Installation: hole is drilled perpendicular to the surface into with Each Wej-it and ANKR-TITE anchor is stamped with the manufacturer's cracked, normal-weight concrete, using drill bits that must comply with logo and the length code on the head.The length codes appear in Table ANSI B 94.12-1977.The concrete thickness must be at least 1.5 times the 3 hole depth,which in turn must equal the anchor length.To clean the hole, compressed air and a wire brush are used.The anchor is installed in a pre- Ill. Evidence Submitted:Data in accordance with the IC80 ES Accep- drilled bolt hole having the same diameter as the anchor.As the bolt is tance Criteria for Expansion Anchors in Concrete and Masonry Elements tightened three to five turns past the hand-tight position,the expansion (AC01) dated January 1993,and descriptive details. ring remains stationary and the stud withdraws,forcing the petals of the expansion ring against the sides of the predrilled hole as the expansion Findings ring enlarges on the stud taper.See Table 2 for allowable loads,edge dis- IV.Findings:That the Wei-it Anchor Bolt and ANKR-TITE Stud Anchor tance spacings and minimum embedment depth. described in this report comply with the 1994 Uniform Building Code-, 3. Materials: subject to the following conditions: a. Stud: The stud is manufactured from ASTM A 108 carbon steel, 1. Allowable shear and tension loads are as described in Section Grade 121-14,or 303,304 and 316 stainless steel. 11 F and applicable tables.. Evaluation reports of lCBO Evaluation Service,Inc.,are issued solely to provide information to Class A members of IC80,utilizing the code upon which the report is based Evaluation reports are not to be construed as representing aesthetics or any other attributes not specifically addressed nor as an endorsement or recommen- dation for use of the subject report I This report is based upon independent tests or other technical data submitted by the applicant.The iCB0 Evaluation Service,Inc.,technical staff has reviewed the I - test results and/or other data,but does not possess test facilities to make an independent verification.There is no warranty by ICBO Evaluation Service,inc.,express or implied as to any"Finding"or other matter in the report or as to any product covered by the report.This disclaimer includes,but is not limited to,merchantability. - Page 1 of 3 Page 2 of 3 — - -. ER-1821 2. The minimum spacing.edge and and distance:to In wilk ap- ;mesa is maintained In fiwn aloe piicable tables.-,.-S::;,, - ti. Where requhed.coatlnuons special iospedtos ht plwvided se- z Calculations jmd*ng that applied loads comply with this report cording to Secdon•A F. : iust be submitted to the building ofNciai for approval. T. We(-it and ANIIWTITE Sind Aubm as awnafachrrad h ANIQII -; 4. Amchors_are Rmited to Installation in waacbd caaaste not TITE t-asteahrg Systems,Tuba.Otlahoma;Uft tpailly emrtrot subjected to tensile exceeding 170 psi(1175 kft). ilupeetiams by United States Testing tompanr. iur, = 5. Anchors are limited to noafire-resistive construction antes:ap- ,7 Q M prmpriate data.is submitted to demonstrate that anchor perfor This report is subject to re-examination Inane year. TABLE 1—ALLOWABLE LOADS FOR WEJ4T®WEDGE ANCHORS INSTALLED IN 2,000 psi'STONE AGGREGATE CONCRETEI= ANCHOR DIAMETER,d MINIMUM ANCHOR EMBED. CAMCAL EDGE UL4TANCE, CRMCAL ANCHOR _ (tom) M ) svAC:WM s. (kwhm) TENSION om1 ) SHEAR moo) 1/4 t /g 2 6 140 305 sh6 1114 23/16 61/. - 165 3W 3/8 11/4 23116 6112 125 305 1/2 13/4 31/16 91/4 195 750 For SI.I inch=S.4 mm.1 Ibf=4.45 N.1 psi=6.89 Va. 17he tabulated values ate for anchors installed at the specified spacing(sQ)and edge(cam,)distances- 2T he tabulated values are for anchors installed in concrete having the designated ultimaoe compressive strength or higher at the time of installation. 3The Wei-it anchor is illustrated as follows: Original ems' 4The embedment depth(ky)is the distance from the concrete surface to the bottom of the anchor after the anchor is set. Me tension values are applicable when the anchors are installed without special inspection as set forth in Section 1701 of the code.When the anchors are installed with special inspection as set forth in Section 1701 of the code.the tabulated values may be increased by 100 percent. X' 26 _ ft"3ct3 ER-1 .,, TABLE2—JISLMABLE LOAM FOR MKR-me WED=Amcmcf s RarAUM w STONEAGMUMAM CaNCREiEs= 1� CiRiM" CMICAL �oo0tnat . � ���=` AN CUM ANCHOR Som ANC11011 OfMEf!!R O !Ir®.A*4 dSTANM e.► 31!►ONo.sw 31MM0=nd4 � 1 �e�aswOsl �w�i s��r moon l� 04 23/; 51/4 435 75S 445 765 450 n0 21h 33/z 71/2 785 L510 820 5%s 31/4 47/8 93/y 1,130 2.085 11210 2.260 1,295 2,440 3/4 33/4 55/g 111/4 1,470 3,390 1.545 3.675 1.625 3.965 For SL-1 inch=25.4 men.I Ibf=4.45 N.1 psi=6.89 kpa. IThe tabulated values am for anchors in—fled at the specified spacing(xvr)and edge(cc..)disaaees.Spacing distanee may be redtees+d>n OSQ provided the tension shear values am nsdomd by 40 percent.Edge distance may be reduced to O.SQ provided the tension values am,e ,-.,by 40 percent and the sheer values are rec by 50 paicmG Linear interpolation may be used for intermediate spacings. 2The abalaQd values we for anchors installed in eoae:t he having the designated ultimate compressive strength at the time of instal ndan. 3MIC ANKR-TrM wedge anchor is;Uumted as follows: ANKR-TiTEO Wedge Anchor •J t 4 he®bedn=nt depth(h f)is the distance fmm the concrete surface to the bottom of the anchor after the anchor is set- 'Ile tension values are applicable when the anchors are installed without special inspection as set forth in Section 1701 of the code-When the anchors are installed special inspection as set forth in Section 1701 of the code-the tabulated values may be increased by 100 percent 67Ihe tabulated tension and shear values may be used for 3/g-inch and 1/,.inch stainless steel ANKR-TTTE wedge anchors provided the values are reduced y pe.t_b 10 - - _ TABLE 3-4.ENGTH IDENTIFICATION CODES CODE LENGTH OF ANCHOR Qncties) COOE LENGTH OF ANCHOR pncn•a) A Ib2 < 2 N 8 < 81/2 B 2 < 21/2 O 8112 < 9 C 2112 < 3 p 9 < 91/2 D 3 < 31/2 Q 91/2 < 10 E 31/2 < 4 R 10 < II F 4 < 41/2 S 11 < 12 G 41/7. < 5 T 12 < 13 H 5 < 51/2 U 13 < I4 I 51/2 < 6 V 14 < 15 J 6 < 61/2 W 15 < 16 K 61/2 < 7 X I6 < 17 L .7 < 71/2 Y 17 < 18 M 71/2 < 8 Z I8 < 19 For SI:1 inch=25.4 men. 0l.'=3.'93 03;26 17.11 502 745 7339 DES-i srEc runt_ 27 Uu� ICB4 Evaluation Service Inc. ..' S360 WORKMAN MILL ROAD • WHrMER,CALiFpR:NlA90E0I-2_99 A subsidiary corporation of the international Conference Of Building Officials EVALUATION REPORT - Repot Nc.5067 Copyright m 1996[CB0 Evaluation Service,Inc- Reissued April r, 1°86 Filing Category:FASTENERS—manual, Pneumatic or Powder-driven Steel Studs and Nails (056) REMINGTON LOW-VELOCITY POWDER-ACTUATED FASTENERS Endings OESA INTERNATIONAL 2701 INDUSTRIAL DRIVE IV.Findings:That the Remington Low-veiorcity f'owder-atduated Fas- IiOWLlNG GREEN,l(ENTUCTCY 421tI2 tenerstdescribed in this report comply with the 19941Ilrilzr=Baildltrg I.Subject:Remington Low-velocihf powder-ac;ualed Fastanars. Code ,subject to the following conditions: H.Dasrsacttoa:;a Gi:oer3E:T;;e Rerririgtca lour-vetcc:y;,csvdar-actu- 1. Maximum allowable shear and tension values are as noted in ated fasteners are smocth-shank drive pigs with nominal diameters of Tables 1 and 2 for fasteners driven TWO concrete and site(-No 0.145-inctres and nominal head diameter of 0.296 inch.The fasteners are increase is permitted for wind ar seismic loati ft conditions- manufactured from AISI 1062-1065 modified steel wire.They are aus- 2. Where wood members are attached by fasteners.the oonoection tempered to a Roci Weil C hardness of 53-56.The fasteners are mechani- to wood rum be investigated to aosure that the aUanrabte wood r~i!y zinc plated to a minim:;m iC-MeS's of 0.0002 incnes.The;!sting is stresses are not exceeded.Washers ace required In order that in condonrartce wit,AS TIM A 164,Type RS.The Remington fasteners wood-bearing stsses will not exceed allowable values where have a bending yield stress,F�,r=265,000 psi.The fas eners are installed Connections are Subjected to tension forces. with Remington's low-veiociy powder-actuated fastening too] and are 3. The fastenersim,minimum embedment,minimum spacing and inter:dedtobeInsralledLT=ncrataandsal.Theallowablesliearandten- edge and end di•Vances=mMwhitTables i and Z. Sion(pu4out)values for fasteners driven into concrete and steel are set 4. At:ac.lmarrt of sill elates to the pertmater at concrete stabs is forth in Tables 1 and 2 respectively.For=nnecttons resisdng'ension,a allowed under the following conditions: steel washer conforming to ASTM A 366 must be used.The washer must be a minimum 1-inch diameter and p.CZ inch thictc a. No cold;oiat exists between the slab and foundations below the plate. Table S is intended to satisfy the requirements of Section 2?=5.a".The b. Na laic "s installed on slabs by concrete bbtit allowable fastener spacing for attachment of,,cod pia:a to ccnc:ste foot- p supported trig or slab m set fort,in Table 3- foundation Wails. '- 9_Installaffon:The in 2llatlon of fasteners into mrcr f�and steel is 5_ The maximum spacing of fasteners attaching Wood plates to by a Remington low-velocity powder-actuated fastening tool.The fasten- concrete comply with Table 3. fng procedures must comply with the manufac",lr�rt recommendations S. The miairpum concrete thictosess must be three limes the tas- C.identification:The fasteners are identiF.ed by a label on packaging terser penetration into concrete. noting the manumaurer's name,wtalcg number and fas'aner size. 7. The fasteners are driven into concrete only after the designated lit.Evidelice Subinitted:Result of shearand tension tests for fasten- ultimate compressive strength is attained. ers driven into concrete and steel This report is subject to re-examination in two years. Eratuaann reports ofICBO Evaluation Serrice,Inc.,are issued solely to provide information to Class A.members of1CRO,udlitzng the code upon which the report is based.Evaluation reports are not to be conrtrued as representing aesthetics or any olheradributu not speciJ cally addressed nor as an endorsement orreeom nen- damin for use of the s t4ioxt report `- This report it based upon Lmdependera tesrr or othertechnical data submiaed by the appiicunt.Tftr 1CB0 Eraluatiatr Scrrice,inc.,technical stafjhas reviewed the • test rest.4s a,vt/..r nth.•r data,hue du.s root pasxes L:rt facilities to nwtfe an irsdependent verification.Trwre!s na vurtartty b)lCI30 Pralttatinn.Brinier,I,se.,tzp►ets ar implied,as to any"Finding"or other matter in the report or as to any prnduet covered by the report.This dIscla/tner Includes,but is not UmUed to,nwrthaXta&Aty. D2gM 1 of 2 04i23.'93 03:26 F.0 502 745 7339 DES. SPEC TOOL ®003 2$ Page 2 of 2 Report No.W67 TABLE I—ALLOWA13LG WORKING VALUES FOR REMINGTON LOW-VELOCrry FASTENERS t' INSTALLED IN STONE-AGGREGATE CONCRETE t.a aaNurtAr cor�t*nt1 eoMvwessivE rrRt�cn+ CATALOG OtAa1iTER PENEMATMN �! 2000 p� 2-m pel _, 3.000 pN ?.�0 Pi �.000 pal NUratitSA {to j {r,J (M J Tension SH..r 7LO ff TinraiprrSPI25 .!}4 t 5 719524(o) Through 144 lI/ 3 1� ISM 110 160 120 I70 3 SP30Q 130 180 210 !8: 1 The fastcnas must not be driven atttil the Cotseete has torched the desigssated ultimate:attapressive strength. 2The 3!lowable shear and tension values are for the fast tsrr Orgy-ll pod at sttel membea connected serest be investig ated Sneed st poate3y is W=nftnm with aazptr�do d TABLE Z—ALLOWABLE WORKING VALUES FOR REMINGTON LOW-VELOCITY FASTENERS INSTALLED IN STEEL(potrnds)1.2 t:ATALOG SHANK DlA iffrEi M ghKm EDG>: NUMSFR SP 50 thmu h (44 CtS1'f, i bittgNWd SPACIIVG SrE!<L J SttEAq �. .I•r4 th 1 41P��) SP 300 .144 1 14 f 11y �4 160 no 200 680 'The entice pleated portion of the fasCaner must penetrate the ne-_I to obtain the tabutared values. ZIcri allowable shear and session valves are for&me fitterAr only'good or steel.mesnbers coraserted must be ns=d9ared separately in accordance:with accepted design crltetia. TABLE 3- ALLOWABLE FASTENER SAACING.FOR ATTACHMENT OF WOOD PLATE TO CONCRETE FOOTING OR SLABIA OYF1iAt4 SMJJIK MAJ MUtA SP ACWG 14 FTC t.ElIGTi1 MEAD mMAETeA CATALOG 1WFtBiri thrmaff) ��-'�,+t DIAMFT� InMAor Nont>•arwry E:p.:er WN�T (4+�frs) Iptartor[iearitrQ WiJa3 py'y�: SP 300 or SPIV 300 3 1 300 .144 'Spacings are hased upon Ih+:auaclunent of 2-inc--.nominal dsick_^c;wwd sill plzt:µ•IL'specific rmviry of 0.4S or meter to rotate Boor stabs or fr xings in accor- dance with Section 2326.6 of the code for ma..-imurtt rwo-smrr buildings. 2A11 walls shall have fasteners placed at 6 Inc.-he frm the ands of silt plates with tmaximmn sa3ang baw-=as china n abov, '"'sreners infncawd shag have two pins placed at 6 itches=d 10 ine.!.a respeetiveiy from each ersd of sill plates with maxi=mn spacing as shown above_ !fasteners must be installed with a mirLm„-.I-ir--4- r " Columns ,1 29 Multiple Case Column Loading using Column65.XLS.Cm=1.0 Sand Hill Storage Ph 11 Building:A Width 40 ft OL , psf Slope 1 LL 20 psf Singlefdoub 2 SL 25 psf Eave 14.83333333 It '11ad: 22.6 psf Hay Spaciaq: 12 It 4nt Uplift: 12.17 psf 12 ft-ext Purl I n Spacing: 5 ft o.c. Interior Columns: Exterior Columns: Grp1 Cs1 Grp1 Cs2 Grp2 C91 Grp2 Cs2 Grp2 Cs3 Size 4C16X2.26 4C16X2.25 6C16X225 6C16X2.25 GCISX225 Fy 55 55 55.00 55 55 dl+sl+pl dl+ll+pl dl+sl+.Swl(a 0.75 d1+.5s1+wl @ 0.75 dl+ll+wl 0.75 L.bending 16.5 16.5 16.08333333 16.08333333 16.08333333 Lx 16.5 16.5 16.08333333 16.08333333 16.08333333 Ly 1.5 1.5 5 5.00 5.00 Lt 6.5 6.5 51 51 5 P (k) 2.03 1.65 0.47 0.05 0.22 Mx (k-in) 10.209375 10.209375 17.30489063 34.60978125 34.60978125 Wind incR No No Ind Intl Inca (incrd in loads) RESULTS Pa 3.815829003 3.815829003 8.312836779 8.312836779 8.312836779 Me 22.00887325 22.00887325 34.76174121 34.76174121 34.76174121 (Eq.C5-1) 0.995894326 0.897371725 0.555847316 1.00225136 1.023570855 (Eq.C5-2) 0.411687214 0.384955803 0292984901 0.523828029 0.5356271 (Eq.C5-3) 0.994559563 0.896284719 0.554424001 1.00193504 1.022234969 OK? Section will work Section will work Section will work Section will not work Section will not work with hat channels at 6 and 1 a AFF close enough,within 2.4% girts at 6 atc for all exterior columns Page 1 COLUMN55 30 COLUMNS WITH COMBINED BENDING AND COMPRESSION Cm= 1.00 Cb= 1.00 Input parameters: 4C16X2.25 v40721.mdd Depth = 4 A' Kx = 1 Flange = 2.25 B' Ky = 1 Lip = 1.055 C' Kt = 1 Thickness = 0.06 t Lx = 9.44 Radius = 0.1875 R Ly = 1.50 E = 29500 Lt = 5.00 G = 11300 Fy,fy = 55 P = 1.78 Mx = 14.17 Fu = 65 My = 0 * RESULTS................ Wind increase? N * Pa = 8.04 kips 4C16X2.25 * Ma = 22.23 kip-in Section will work * (Eq. C5-1) = 0.86 <—Controls * (Eq. C5-2) = 0.50 Group 1 * (Eq. C5-3) = 0.86 Case 1 EXAMPLE CALCULATION Basic parameters and properties: r = 0.218 radius to the center of the material alpha = 1.000 ineffective area reduction factor a = 3.505 straight depth b = 1.755 straight flange c = 0.808 straight lip u = 0.341 curve A = 0.600 Area a- = 3.940 depth cl to cl b- = 2.190 flange cl to cl c- = 1.025 lip cl to cl J = 0.001 St. Venant torsion constant Ix = 1.508 Moment of inertia about x-axis x- = 0.888 Distance from centroid of the section to cent ly = 0.482 Moment of inertia about y-axis m = 1.371 Distance from shear center to centerline of w Cw = 2.594 Warping Constant xo = -2.259 Distance from centroid to shear center rx = 1.586 Radius of gyration, x-axis ry = 0.896 Radius of gyration, y-axis ro = 2.902 Radius of gyration, polar ro"2 = 8.422 Radius of gyration, polar, squared Beta = 0.394 Torsional-flexural constant Pagel COLUMN55 31 Compression capacity: Determination of Pa (Section C4): Since the channel is singly symmetric, Fe shall be taken as the small of Fe calculated according to Section C4.1 or Fe calculated according to Section C4.2. Section C4.1 Fey = 721.646 Fex = 57.0393913 (Fe)1 = 57.039 Section C4.2 Thetaex = 57.039 Thetat = 43.138 (Fe)2 = 27.545 Therefore Fe = 27.545 Fy/2 = 27.500 Fn = Fy/2 = 27.500 Determination of Ae: Flanges: d = 0.808 Is = 0.003 D = 1.055 w = 1.755 D/w = 0.601 S = 41.923 S/3 = 13.974 w/t = 29.250 Case II la = 0.000 n = 0.500 Isla = 10.241 k = 6.236 <= 5.25-5(D/W) = 2.2443 k = 2.244 C2 = 1.000 C1 = 1.000 Lambda = 0.627 p = 1.035 b = w 1.755 w/t = 29.250 Web: w = 3.505 Page 2 COLUMN55 32 w/t = 58.4166667 OK< 500[Section BI A-(a)-(2)] k = 4.000 (Since connected to two stiffening elements) Lambda = 0.938 >0.673 p = 0.816 b = pw 2.860 w/t = 47.665 Lips: d = 0.808 k = 0.430 (unstiffened compression element) ds = d's (for simple lip stiffener) Lambda = 0.659 < 0.673 p = NA ds'=d = 0.808 ds = d's(ls/la)<=d's 0.808 d/t = 13.458 <60 (section B1.1-(a)-(3)) Calculate new Area: Ae = 0.561 Pn = 15.429 Omegac = 1.920 Pa = 8.036 kips Bending capacity: Members in bending, Section C3 Ma = Mn/Omegaf (Eq. C3.1-1) Mn = The smaller of: <=ScFy or (Eq. C3.1.1-1) <=ScMc/Sf (Eq. C3.1.2-1) Omegaf = 1.67 factor of safety for bending Sc = Elastic section modulas of the effective section calculated with the extreme compression or tension fiber at Fy. Sf = Elastic section modulas of the full unreduced section for the extreme compression fiber. Sf = 1/y Sfx = 0.754 inA3 Sfy = 0.542 inA3 Determine Sex LcD f= Fy: Web f1 = 48.194 ksi f2 = -17.315 ksi Si = -0.359 Page 3 COLUMN55 33 k = 11.741 wR = 58.417 Lambda = 0.725 rho = 0.961 r be = rhow 3.368 in b1 = 1.003 in b2 = 1.684 in b1 + b2 = 2.686 in be = "- 1.81927 b2 = 0.817 in Flanges S = 29.644 S13 = 9.881 wft = 29.250 Case II la = 0.001 inA4 Is = 0.00263 in^4 Isla = 1.798 n = 0.500 C2 = 1.000 C1 = 1.000 D/w = 0.601 k = 2.863 but< 2.244 k = 2.244 Lambda = 0.887 rho = 0.848 b = chow 1.488 in b1 = 0.744 in b2 = 0.744 in Ups k = 0.430 w/t = 13.458 f=f3 = 48.194 ksi Lambda = 0.873 rho = 0.857 d's = flow 0.692 in ds = 0.692 Effective area: Ae = ycg = 2.067 from top fiber assumed L y I'1 Element Effective distance Ly Ly"2 about own Length from top axis(in.A3) Page 4 COLUMN55 Cin.) fiber(n.) Tens. Flange 1.755 3.970 6.907 27.660 Tens. Comers 0.683 3.891 2.687 `"r= 10.340 Tens. Lip 0.808 3.349 2.704 9.055 0.044 Tens. Web 1.686 2.910 4.905 14.271 0.399 Comp.Web b2 0.817 1.858 1.354 2.246 0.045 Comp. Web b1 1.003 0.749 0.751 0.562 0.084 Comp. Comers 0.683 0.109 0.074 0.008 Comp. Fing. b2 0.744 0.030 0.022 0.001 Comp. Fing. b1 0.744 0.030 0.022 0.001 Comp. Lip 0.692 0.594 0.411 0.244 0.028 sum 9.613 19.869 64.389 0.600 ycg+ = Ly/L 2.067 in. from top fiber 1'eff = Ly^2+1'1-Lycg^2 23.925 in.A3 Act leff = tl'eff 1.435 Sec = leff/ycg+ 0.695 in.A3 St = leff/ycg- ycg- = depth-ycg+ 1.933 Set = 0.743 in.A3 Determine Scx @ f= Mc/Sf: f = 53.144 ksi Web f1 = 46.765 ksi f2 = 46.356 ksi Si = 0.991 k = 4.018 w/t = 58.417 Lambda = 1.221 rho = 0.672 be = rhow 2.354 in b1 = 1.172 in b2 = 1.182 in b1 + b2 = 2.354 in be = 1.81472 b2 = 0.643 in Flanges S = 32.148 Page 5 COLUMN55 35 1 >= P/Pa+Mx/Max+My/May (Eq. C5-3) P/Pa = 0.222 :.x Cmx, Cmy = 1.000 Alphax = 1-(OmegacP/Pcr) Omegac = 1.920 Pcr = Pi^2EIb/(KbLb)"2 1354.907 kips Alphax = 0.997 Pao = 14.026 kips Mx = 14.170 My = 0.000 Max = 22.226 May = 0.000 Maxo = 38.201 kip-in Mayo = 0.000 (Eq. C5-1) = 0.861 <-Controls (Eq. C5-2) = 0.498 (Eq. C5-3) = 0.859 Compression capacity (Pao): Fn = Fy 55.000 Determination of Ae: Flanges: d = 0.808 Is = 0.003 D = 1.055 w = 1.755 D/w = 0.601 S = 29.644 S/3 = 9.881 WA = 29.250 Case II la = 0.001 n = 0.500 Is/la = 1.798 y. k = 2.863 <= 5.25-5(D/W) = 2.2443 k = 2.244 C2 = 1.000 C1 = 1.000 Lambda = 0.887 p = 0.848 b = pw 1.488 w/t = 24.799 Page 8 COLUMN55 36 S/3 = 10.716 wft = 29.250 Case IC la = 0.001 inA4 Is = 0.003 inA4 - Isla = 2.611 n = 0.500 C2 = 1.000 C1 = 1.000 D/w = 0.601 k = 3.362 but< 2.244 k = 2.244 Lambda = 0.872 rho = 0.858 b = chow 1.505 in b1 = 0.753 in b2 = 0.753 in Lips k = 0.430 wft = 13.458 f= 1`3 = 46.567 ksi Lambda = 0.858 rho = 0.867 d's = rhow 0.700 in ds = 0.700 Effective area: Ae = 0.611 ycg = 2.062 from top fiber assumed - - L y I'1 Element Effective distance Ly Ly"2 about own Length from top axis (in.A3) (in.) fiber(in.) Tens. Flange 1.755 3.970 6.967 27.660 Tens. Comers 0.683 3.891 2.657 10.340 Tens. Lip 0.808 3.349 2.704 9.055 0.044 Tens. Web 1.690 2.907 4.914 14.287 0.402 Comp. Web b2 0.643 1.741 1.119 1.948 0.022 Comp. Web b1 1.172 0.833 0.977 0.814 0.134 Comp. Comers 0.683 0.109 0.074 0.008 Comp. Fing. b2 0.753 0.030 0.023 0.001 Comp. Fing. b1 0.753 0.030 0.023 0.001 Comp. Lip 0.700 0.597 0.418 0.250 0.029 page 8 COLUMN55 37 sum 9.638 19.877 64.365 0.631 ycg+ = Ly/L 2.062 in. from top fiber - I'eff = Ly^2+1'1-Lycg^2 24.006 in.A3 Act leff = tl'eff 1.440 Scc = leff/ycg+ 0.698 in.A3 St = leff/ycg- ycg- = depth-ycg+ = 1.938 Sct = 0.743 in.A3 fc = My/Scc 57.362 ksi ft = My/Sct 53.900 ksi Determine Mc: My = SfFy 41.463 kip-in Me = CbroA(ThetaeyThetat)".5 Cb = 1.000 Thetaey = Pi^2E/(KyLy/ry)^2 721.646 Thetat = (GJ+(Pi^2)ECw/(KtLt)^2))/Aro"2 43.14 kip-in Me = 307.096 kip-in Me>0.5My Mc = 40.064 kip-in Therefore: Mn <= 38.201 kip-in <= 37.117 kip-in Mn = 37.117 kip4n Ma = 22.226 kip-in 1.852 kip-ft Combined bending and compression: 1 >= P/Pa+CmxMx/MaxAlphax+CmyMy/MayAlphay (Eq. C5-1) 1 >= P/Pao+Mx/Maxo+My/Mayo (Eq. C5-2) When P/Pa <= 0.15 use: Page 7 COLUMN55 38 ( Web: w = 3.505 w/t = 58.4166667 OK<500 [Section B!.1-('a)-(2)j k = 4.000 (Since connected to two stiffening elements) Lambda = 1.327 > 0.673 p = 0.629 b = pw 2.204 w/t = 36.729 Lips: d = 0.808 k = 0.430 (unstiffened compression element) ds = d's (for simple lip stiffener) Lambda = 0.932 p = 0.820 ds'=d = 0.808 ds = d'sos/la)<=d's 0.808 d/t = 13.458 < 60 (section 81.1-(a)-(3)) Calculate new Area: Ae = 0.490 r _ Pn = 26.930 Omegac = 1.920 Pa = 14.026 kips Page 9 COLUMN55 39 COLUMNS WITH COMBINED BENDING AND COMPRESSION Cm= 1.00 Cb= 1.00 Input parameters: 8C14X2.5 v40721.mdd Depth = 8 A' Kx = 1 Flange = 2.5 B' Ky = 1 Lip = 0.78 C' Kt = 1 Thickness = 0.075 t Lx = 8.00 Radius = 0.1875 R Ly = 1.50 E = 29500 Lt = 8.00 G = 11300 Fy,fy = 57 P = 8.325 Mx = 2.40 Fu = 65 My = 0 * RESULTS................ Wind increase? N * Pa = 10.84 kips 8C14X2.5 * Ma = 69.40 kip-in Section will work * (Eq. C5-1) = 0.80 <—Controls • * (Eq. C5-2) = 0.47 Group 1 * (Eq. C5-3) = 0.80 Case 1 S T4K C z oArV C•tt c Pagel Sheetl 40 Wind uplift on column dips P uplift 0.772 k wind factor-, Gage beyond flange= 1 inch t= 0.1875 inches - L= 3.5 inches outstanding log--- 2 inches T= 0.58 k(reduced by wind factor) single shear#12 screw-- 585 #/screw-working load(tested ultimate/2.5 F.S.for direct fastener shear) (tested ultlmate/3.0 F.S.for thru-sheet tearing) No.of screws req'd= 0.99 trib bending= 0.17 kfinch Bolt Prying-refer to page 4-90 ASD 9th Ed. BOLTS:ROW 1 1 bolts 0.58 KIPSIBOLT SHEAR IN BOLTS: 0 kip/bolt LOAD TO PLATE(by AISC hanger method) a(geometric)= 1 p= 3.5 (w trib) 1= 0.1875 1.25b= 1.25 Fy= 36 b= 1 a= 1 B= 1.13 d= 0.75 a'= 1.375 T= 0.579 b'= 0.625 d'= 0.8125 "bolts ok,check flange:" delta= 0.7679 tc= 0.2118 rho= 0.4545 alpha'= 0.2467 alpha= -0.4512 if alpha'is: then Tall is: >1 1.5662 >0;<1 1.0537 <0 1.13 Tall= 1.0537 k "flange thickness is ok" Q=B(delta)alpha(rho)(t/tc)^2 0 kips/bolt prying force resultant bolt load= 0.579 kips/bolt 0.8475 k allowable OK Col-Base.XLSXShs*1 Page 1 8rM98 t Sheets 41 Roof Loads on Column Base Chas Wind Upiifc Wind speed= 80 mph 85 mph 90 mph Wind Exposure= C C C qs= 16.4 18.6 20.8 Ce= 1.06 @ 15' 1.06 1.06 1= 1.0 1.0 1.0 Cq= 0.7 - 0.7 0.7 Uplift Pressure= qs*Ce*t*Cq= 12.17 psf 13.80 psf 15.43 psf Uplift on Clip= 5'x10'x12.17 psf 608.44 lb 690.06 lb 771.68 lb Snow Load: Unifom load= 25 psf 30 psf 40 psf Trib area= 51x10' 50 sqft 50 sgft 50 sgft Load/Clip= 1250 lb 1500 lb 2000 lb #12 screw allowable= 585 lb/screw 585 lb/screw 585 lb/screw Screws Required= 2.14 2.56 3.42 Use: 3 Screws 3 Screws 4 Screws Thcl.xIs%Sheetl Page 1 9�18I98 42 / May 20,1998 (` SDI DIAPHRAGM SHEAR DECK: 1.25'Deck,#12 Frame Fastening.#14 Stitch Fastening s 26 ga superspan ATTACHMENT PATTERN 3 serews/sht to supports 3 screws/sht at ends 60 'o.c.edge fastener spacing attached to pudin?- 1 (1/0) 30 'o.c.sidelap fastener spacing attached to pudin?- 0 (1/0) L = 15 length(fl) np - 2 #of pudbw_not at and L. = 60 span(In) n. - 0 #of edge fasteners not attached to purfln L - 5 purlin spacing(ft) n, = 6 0 of seem fasteners not attached to pudin w = 36 deck width(in) N - 1.0 S of fastenersflt at and support D = 1.25 deck height(n) aj - 0.75 (Ex lw)dist factor at end condition t - 0.0179 deck thickness(in) (x2- 0.75 (Mkplw)dist factor at purlin condition (1f = 856 support fastener(Ibs) , - 315 Q, = 383 seam fastener(lbs) Fx.2 - 315 1 = 0.0475 panel moment of inertia irM do- 12 corrugation pitch,in. Fy - 80 ksi panel S. 13.44 developed flute width 2(e+wf)+f inches. ULT SHEAR CAPACITY BASED ON EDGE FASTENER ULT SHEAR = (2ai+npa2)+n.)OWL ULT SHEAR = 171.2 pif ULT SHEAR CAPACITY BASED ON INTERIOR PANEL A= 1 (one fastener per location,at edge) X - 1-0W(240t°') X = 0.8054 a. a, 0.4474 ULT SHEAR = ((2A(,-1))+n,a,)+(((2npF4)+(4Ex.2))/(v�))CWL ULT SHEAR = 241.96 plf ULT SHEAR CAPACITY BASED ON END OF PANEL - B = (n.a.)+(((2np£xp2)+(4£x.))/(w')) B = 4.629 ULT SHEAR - (0,NB)/(((B2)+((NL)2))s') _ (NW/(LZN2+B2))0.s Qf ULT SHEAR = 252.42 plf - 252.416814 SAFETY FACTOR(SF) - 2.35 wind (mechanical connections) - 2.50 seismic S 171.2 pif (lowest of ultimate shear capacities) S SJSF S. 73 pif -wind S. 68 plf -seismic Stability Check: Sk= 12.95x103/Lv2 (13t3dc/s)" Sc- 2.5072 Idf Sc= 2507 pif Ssc= Sc/(f.$) factor of safety=2.0 SsF 1264 pif S= 73 pif-wind ALLOWABLE DIAPHRAGM SHEAR CAPACITY S= 68 pif-seismic •' 3 • 4 May 20,1998 i SDI DIAPHRAGM SHEAR DECK: 0.625"Deck,#12 Frame Fastening,#8 Stitch Fastening 29 ga norctad ATTACHMENT PATTERN 4 screws/sht to supports 4 serews/sht at ends 60 'o.c.edge fastener specurg attached to purlin?- 30 'o.c.sidelap fastener spacing attached to purlin7- 0 (1/0) L = 15 length(R) np = 2 #of pudkm not at and L. = 60 span(in) n, = 0 #of edge fasteners not attached to pudin L. - 5 purlin spacing(fl) n, - 6 #of seam fasteners not attached to purlin W = 36 deck width(in) N - 1.3 #of fasteners/R at and support D - 0.625 deck height(in) of = 1 (Dr./w)dist factor at and condition t = 0.0134 deck thicievress(in) a2- 1 (Drp/w)diet factor at purlin condition Qf - 641 support fastener pbs) Dcp2 - 430 Q. - 248 seam fastener(Ibs) bc.2 - 430 1 = 0.0067 panel moment of inertia in`/fl do= 9 corrugation pitch,in. Fy - 80 ksi panel s- 0.0134 developed flute width 2(e+"+f inches. ULT SHEAR CAPACITY BASED ON EDGE FASTENER ULT SHEAR = (2af+npa2)+n.)QrL ULT SHEAR = 170.9333 pff ULT SHEAR CAPACITY BASED ON INTERIOR PANEL A- 1 (one fastener per location,at edge) ;, - I-DW(240tn X = 0.8875 a, = Q./Qf a, = 0.3869 ULT SHEAR = ((2A(1-1))+n,a4+(((2npExp2)+(4"))/(w2)))(:!L ULT SHEAR = 203.01 pif ULT SHEAR CAPACITY BASED ON END OF PANEL B 4.9757 W/ 2N2+BZ))°-5 Of ULT SHEAR = (Q,r18�(((B2)+((NL)2))°'� _ (N (L ULT SHEAR = 206.34 plf = 206.338312 SAFETY FACTOR(SF) -2.36 wind (mechanical connections) - 2.50 seismic S. = 170.93 pff (lowest of ultimate shear capacities) S = SJSF S= 73 plf-wind S= 68 plf seismic Stability Check: Sc= 12.95x1O2/Lv2 (1°t3dc/s)0'25 Ski- 2.4322 ktf Sc-- 2432 pit Ssc= Scl(f.$) factor of safety-2.0 Ssk.-- 1216 plf S= 73 pif-wind ALLOWABLE DIAPHRAGM SHEAR CAPACITY S= 68 plf-seismic 44 29 ga.Nwefad Fastening: for a1,off,M4z and Z wkuhtiorm at end Bond at interior card X.1= 2 in X.12= 4 In= x41= 2 in x412= 4 ln2 x.2= 0 in x.22= 0 in2 x4z= 0 in x422= 0 in2 x.3= 7 in x.22= 49 W x4a= 7 in x42= 49 in2 x..= 0 in xµ2= 0 W2 x4.= 0 in x4.2= 0 in2 x 6= 11 in x.62= 121 in2 xO= 11 in x4s2= 121 in' x.4= 0 in x e2= 0 inZ x s= 0 in x4r2= 0 inZ x.7= 16 in x r2= 2W ins x4r= 16 in 472= 256 inZ x s= 0 in X.2= 0 in2 x44= 0 in x442= 0 ins s 36 in Lx.2= 430 in2 Bx4= 36 in n)42= 430 in2 Screw Fastener Strength Caladatiotm Per 801 Equations: Qf = 1.25 F„t(1-0.005 Fj = 0.804 kips (equation 4.5-1) as- 28.5 t 0.3819 kips (equation 4.5.2) Per AISI W spaeificatiam. Qf = 0.641 kips as. 0.248 kips use; Qf = 0.641 kips Q3= 0.248 kips