HomeMy WebLinkAboutStorage Bldg - COM Engineering / Geo-Tech Reports - 12/2/1994 y
O l Z7 DEC - 21994
TECH-FAST
eMETAL SYS 7 EMS INC. FOR APPROVAL ONLY
Q
STRUCTURAL CALCULATIONS
FOR
PARK PLACE MINI STORAGE
DUNG KURT CHAFE
N E 3150 HIVY 300
o4'NA o FAIR, WA 985-08
w
w
Ado �PEG19SC ��V�Fv PREPAR
SION�' 1
A
S,
MARK DUNC . P.E.
CHANGES THESE PLANS MUST BE
SUBMIT GRANGES FOR APPROVAL ON THE JOB SITE
PRIOR TO PERFORMING WORK
FOR INSPECTION.
MUST MEET ALL CURRENT
WASHt GTON STATE CODES APPROVED
MASON BUILDING INSPECTOR
CHANGES SUBJECT TO APPROVAL
/G�vS � MEc� 19�c� .�_� DATE!i IZ= y
Headquarters:325 Tacoma Ave.S.,Suite 2,Tacoma,Washington 98402 20G/572 4440 Fax:572 6396
w
TECH-FAST MINI STORAGE DESIGN Pagc 1
GOVERNI`G CODES
Uniform Building Code , (UBC) 1991 Edition
RISC Steel Consturction Manual , 1988 Edition
NISI Cold-Formed Steel Design Manual , 1986 Edition
SDI Diaphragm Design Manual , 2nd Edition
MA`rERIAL SPECIFICATIONS
-Purlins and columns , 4" and 6" , 16 ga. and heavier to
be : ASTM A446 Grade D, 55 ksi min . yield.
-Columns , 2 1/2" and 4" , 18 ga . and lighter to be :
ASTM a446 GRADE A. 33 ksi min. yield.
-Roofing, siding and partitions to be :
ASTM A446 Grade E. 80 ksi min. yield.
-Fasteners , as called out in drawings and details.
SUMMARY OF MATERIALS BUILDING A
ROOF PANEL 26 ga SuperSpan or as noted below
SIDING PANEL 26 ga SuperSpan or as noted below
PARTITION PANELS 29 ga Norclad or as noted below
ROOF PURLINS 4Z16x2 . 25 @ 5. 0 ft c/c
RIDGE PULINS 4C16x2 . 25
HEADERS 4C16x2 . 25
GIRTS 4SS 20 g_a. (25/80C/3)
CONNECTIONS
Center Span 1 . 69 kips Therefore use 3 TEKS
End Span 1 . 35 kips Therefore use 3 TEKS
Endwall 0 . 68 kips Therefore use 2 TEES
Sidewall 0 .68 kips Therefore use 2 TEKS
COLUMNS Use a 4C16X2 . 25 for all columns
Group 1 Lby = 9 . 75 ft Lbx = 9 .75 ft
Case 1 P = 1 . 69 kips
Group 2 Lby = 5 .00 ft Lbx = 9 .75 ft
Case 1 P = 0 . 51 kips M = 6 . 06 in-kips
Case 2 P = 0. 25 kips M = 12 . 11 in-kips
Group 3 Lby = 9 . 75 ft Lbx = 9 .75 ft
Case 1 P = 1 . 27 kips M = 1 . 34 in-kips
Case 2 P = 0 . 63 kips M = 2 . 68 in-kips
PARTITION PANELS
Lat . interior 29 Ga . Norclad with 4 fasteners per support
Long . interior. 29 Ga . Norclad with 4 fasteners per support
SIDING PANELS
Endwalls 26 Ga . Superspan with 3 fasteners per support
Sidewalls 26 Ga . Superspan with 3 fasteners per support
ROOFING PANELS
Lat . .roof 26 Ga . Superspan with 3 fasteners per support
Long . roof 26 Ga . Superspan with 3 fasteners per :support
BASE MEMBERS 5/32 x 1 1/4 Drive pin at
CALCULATIONS BY MARK D. DUNCAN , P.E.
TECH-FAST MINI STORAGE DESIGN Paae 2
Interior (lateral) 24 in . on center 16 as angle
Exterior Endwalls 32 in. on center 16 as angle
Exterior Sidewalls 45 in . on center 16 a_a angle
3/8 Y 2 1/2 exb bolts with
Mullions 2 oer mullion
DESIGN LOADS
Snow Load = 25 psf (ground)
Live Load = 20 r)sf
Dead Load = 2 psf or actual loads
Wind Load. = 80 moh exp. C
p = L e C qq s I--__------=---
as = 16 . 40 vsf
ht = 9 . 75 ft_
Cc = 1 . 06
I = 1
Ca = 1 . 3 otur.ward
Cq = 0 . 7 upward
p = 22 . 60 psf outward
p = 12 . 17 psf upward
Siesmic = Zone--3
V = ZIt:W/Rw
Z = 0 . 3
I = 1
C = 2 . 75
°a = 0 . 00% Reduction factor for snow load over 30 psf .
4s' = 2 r;s f
Rw = 6
L = 0 . 3 psf 0. 1375 W
ROOF PANEL
26 aa. 3 ' -0" wide SuperSpan panel (attachment #1a) Fy= 80 ksi
Snow = 25 psf Span = 5 ft .
Dead = 1 psf Capacity = 68 psf
--------- (based on 68 psf at 5 ft span)
TOTAL 26 r)sf
Therefore use 26 ga SuperSpan
7r YC
SIDING PANEL
lh ga . 3 ' -0" wide SuperSpan panel (attachment #1a) Fy= 80 k-i
Wind = 22 . 60 psf Span = 5 ft .
Capacity its = 90 nsf
(based on 90 psf at 5 ft span)
Therefore use 26 ga SuperSpan
CALCULATIONS BY MARK D . DUNCAN , P.E.
TECH-FAST MINI STORAGE DESIGN Page 3
PARTITION PANELS
29 a_ a . W -0" wide Norclad panel (attachment #2a) Fv_ = 80 ksi
Load = 5 psf Span = 5 ft .
Capacity. = 14 psf
(based on 14 psf at 5 ft span)
Therefore use 29 ga Norclad
Yc:k�:x:k7::C:k�X•;::Yc :�;•i•7;� icY::✓. Y::Kr. Yc+:
ROOF PURLINS
See attachments #3a and #4a for general properties
Span = 10 f t .
Space = 5 f t .
Snow = 25 psf x 5 = 125
Dead = 2 psf x 5 = 10
TOTAL 135 plf
Mss = wl-2/8
1 . 6875 hip-ft
Therefore use 4Z16x2 . 25
RIDGE PURLINS
See attachments #3a and #4a for general properties
Span = 10 f t . - - -
Space = 2 . 5 ft .
Snow = 25 psf x 2. 5 = 62. 5
Dead = 2 psf x 2. 5 = 5
TOTAL 67 . 5 plf
Mss = w1 -2/8
0 . 84 kip-ft
Therefore use 4C16x2 .25
EAVE CHANNELS
See attachments #4b for general properties
Span = 8 f t .
Space = 2 . 5 ft .
Snow = 25 psf_ x 2 . 5 = 62 . 5
Dead = 0 psf x 2 . 5 = 0
Mss = wl" 2/8 ---------
= 0 . 50 kip-ft TOTAL 62 . 5 plf
Sreq = M (12) /Fb
0 . 182 in^3 Eave channel and header to make up
the eave member .
CALCULATIONS BY MARK D. DUNCAN, P .E.
TECH-FAST MINI STORAGE DESIGN Page 4
4" 16 ga cave channel = 0. 053 in-3
4C16x2 . 25 = 0 . 346 in-3
Total = 0 . 398 in-3 219 . 18%
Therefore use 4C16x2 . 25
GIRTS
Span = 5 f t .
Trib = 4 . 88 ft .
Wind = 22 . 60 psf
w = 110. 17 p 1 f
M = wl '2/8
0. 34 kip-ft.
Therefore use 4SS 20 ga.
REACTIONS & CONNECTIONS BIND TO SNOW RATIO 1
Center Span Columns 412 TEK 3 Fastener from 16 ga to
R = w1fl . 25) 16 ga capacity (attachment #5)
1 . 69 kips
Therefore use 3 TEKS ultimate = 1620 lbs
allow = ult/2. 5
End Span Columns = 648 lbs
R = wl
1 . 35 kips #12 TEK 3 Fastener from 14 ga to
Therefore use 3 TEKS 14 ga capacity (attachment #5)
Endwall Columns ultimate = 1970 lbs
R = wl/2 allow = ult/2 . 5
= 0 . 68 kips = 788 lbs
Therefore use 2 TEKS
#12 TEK 3 Fastener from 12 ga to
Sidewall Columns 12 ga capacity (attachment #5)
R = wl/2
O . 68 kips ultimate = 1986 lbs
Therefore use 2 TEKS allow = ult/2 . 5
794 lbs
COLUMNS
Columns arc divided into 3 groups :
1 ) Interior columns taking roof load .
2) Exterior endwall columns taking wind and roof lead .
3) :Interior columns taking roof and partition load .
Group #1 tull snow lead
Pmax = 1 . 69 kips Lbx = 9 .75 ft .
CALCULATIONS BY MARK D. DUNC?1N , P . E.
f
TECH-FAST MINI STORAGE DESIGN Page 5
Lbv = 9 . 75 ft .
Group #2 full wind lead
PmaY = 0 . 68 kips
Mmax = wl-2/8 wind load Lbx = 9 .75 ft.
16 . 11 kip-in Lbv = 5. 00 ft .
With the 1 . 33 factor for wind and the load combination
per UBC Section 2303 (t) :
Case 1
P = 0 . 51 kips full snow/1 . 33
M = 6 . 06 kip-in 1/2 wind / 1 . 3:3
Case 2
P = 0.25 kips 1/2 snow/1 . 33
M = 12 . 1.1 kip-in full wind / 1 . 33
Group 43 5 psf partition load
Pmax = 1 . 69 kips Lbv = 9 . 75 ft.
Mmax = wl"2/8 wind load Lbv; = 9 . 75 ft .
3 . 56 kip-in
With the 1 . 33 factor for wind and the load combination
per UBC Section 2303 (f ) :
Case 1
P = 1 . 27 kips full snow/1 . 33
M = 1 . 34 kip-in 1/2 wind / 1 . 33
Case 2
P = 0 . 63 kips 1/2 snow/1 . 33
M = 2 . 68 kip-in full. wind / 1 . 33
(Refer to attachment #6 for column analysis)
Use a 4C16Y2. 25 for all columns
LATERAL ANALYSIS
All of the partition walls and some of the exterior walls are
acting as shear walls in accordance to SDI . With the areas being
fairly small the tributary area method will be used to determine the
lateral forces .
Wind Loading_
Lat . = 14407 lbs =Area
Lona_ . = 3093 lbs Siesmic Loading_ x = 1
Lat . = 1237 lbs
Long . = 12.37 lbs
Shear wails ( lateral )
Lar. . = 450 ft .
Shear = 32 . 0 plf = 16 . 0 plf (for roof )
CALCULA` LONS BY MARK D. DUNCAN, P . E.
TECH-FAST MIN! STORAGE DESIGN Paae 6
For interior partition walls : (Der attachment #7 )
29 Ga. Norclad with 4 fasteners per support
For exterior sidina:
26 Ga . SuDersDan with 3 fasteners per support
*Y:., ?C It Y: XY:*AAA Y:A ttA Y;+:i;7 Y:*Y<W YC;k*YC**:k ;�;:':•k 7C 7:�:�: Y:;C t Y:Y;
For roofing :
26 Ga . SupersDan with 3 fasteners per support
A *Y,**Yk W W W W It*It:k****W A A Y:Y:X*:k***X***;k Y:*A'*I:k)t*Y:YL A Y:
Shear walls (longitudinal)
Long. = 150 ft .
Shear = 20 . 6 olf
For interior Dartition walls : (Der attachment #7 )
29 Ga . Norclad with 4 fasteners _Der su000rt
A X',k***:k:tA A-,k XA:C;k*YC***A:k'.`?X AC k'AA*A X)t A A AA X x't:k)k w :t**:k
For exterior si.dina:
26 Ga . SuDersDan with 3 fasteners Der ouDDort
For roofina:
26 Ga . SuDersDan with 3 fasteners Der su000rt
AAX*A'XA**;kA** AIX**A*AX*X*Y >< :k**Y A*lip.,AtA
BASE ANGLE ATTACHMENT (light gage)
Interior (lateral)
Shear = 24 . 4 olf Derpendicular to wall
Shear = 32 . 0 plf parallel to wall
Ten; = 152 . 1 plf uplift
5/32 x 1 1/4 Drive Din at 24 in. on center
Exterior Endwalls
Shear = 103 . 1 Dlf oeroendicu.lar to wall
Shear = 32 . 0 r)lf parallel to wall
T'eris = 60 . 8 plf i.ipl if t
5/32 x 1 1/4 Drive pin at 32 in. on center
Exterior Sidewalk
Shear. = 96 . 0 plf perpendicular to wall
CALCULATIONS BY MARK I). DUNCAN, P. E.
TECH-FAST MINI STORAGE DESIGN Page 7
Shear = 20 . 6 plf parallel to wall
Tens = 30 . 4 plf uplift
5/32 x 1 1 /4 Drive pin at 45 in. on center
Mullions
Shear = 1031 . 1 lbs perpendicular to wall
Shear = 0 . 0 plf parallel to wall.
Tens = 304 .2 lbs uplift
3/8 X 2 1/2 exp bolts with 2 per mullion
Fastener capacities
5/32 x 1 1/4 Drive pin into 2500 psi concrete
TENS = 1388 lbs ultimate
SHEAR= 2128 lbs ultimate
Factor of safety = 4
TENS = 347 lbs allowable
SHEAR= 532 lbs allowable
3/8 dia x 2 1/2" emb expansion anchor into 2500 _psi concrete
TENS = 3281 . 0 lbs ultimate
SHEAR = 4087 . 0 lbs ultimate
Factor of safety = 4
TENS = 820 . 3 lbs allowable
SHEAR = 1021 . 8 lbs allowable
Fastener quantities
1 => (x"2+v"2) - . 5/SHEAR+Tens/TENS
BASE ANGLE CAPACITY (Light gage)
Assumes that pin or expansion bolt is _placed within 1" of the
verticle leg of the angle or channel . Fv = 55 koi
Interior (lateral)
Tens = 152 . 110 plf uplift
Mact = 0 . 152 kip-in
Fb = 0 .75Fv(1 . 33)
= 54 . 8625 ksi
Sreq - 0 . 003 in"3
t = 0 . 037 in Therefore use a 16 ga angle
Exterior Endwalls
Tens = 60 . 844 plf uplift
Mact = 0 . 061 kip-in
Fb = 0 . 75F'v ( 1 . 33)
54 . 863 ksi
Sreq = 0 . 001 in-3
r_ = 0 . 024 in Therefore use a 16 ga angle
CALCULATIONS BY MARK D. DUNCAN, P . E.
i
TECH-FAST MINI STORAGE DESIGN Paae 8
Exterior Sidewalls
Tens = 56 . 498 plf uplift
."fact = 0 . 056 kip-in
Fb = 0 .75Fv( 1 . 33 )
54 . 8625 ksi
Srea = 0 . 001 in 3
t = 0 .023 in Therefore use a 16 as anale
CALCULATION'S BY `'TARE; D . DUNC:AN , P . E .
t
SUPER SPAN
ZINCALUME
• a.7'-t
_ Twice the Ufe l
❑ Full 36"coverage
❑ Custom lengths available
[j 1 1/4"deep trapezoidal ribs 12"O.C.for
maximum strength
❑ Full bearing rib at side-lap provides
consistent weather-tight joint Super Span'Section Properties
t S+ 1+ S_
❑ Available in attractive Silicone-Modified Gauge (lbsgtg (in=eft) (ins/ft) (inYft) (ins/ft)
Polyester colors or bare Zincalume"
❑ Complementary trim and accessories readily 26 0.90 .0461 .0475 .07I2 .0384
available 24(E)' 1.16 .0638 .0648 .0996 .0522
24(C) 1.16 .0667 .0656 .1058 .0540
'E indicates ASTM A446 Grade E steel
'C indicates ASTM A446 Grade C steel
ASC PACIFIC
Building Solutions in Metal
Sacramento-800-726-=.916-37Z-6851 FAX916.372-7�06
Los Angel ea-800-272.2466,909.823-IMI FAX 909-823-2625 Phoenix-800-551.2062,602.598-1200 FAX 602 598-1219
Tacoma - 800-7334955,206-383-4955 FAX 206-M-0791 Salem-800-336-1509,503-362.5638 FAX 503-362-W4
Spokane--800-7763771,509-535-4600 FAX 509-535-1346 Anchorage-800478.2727,907.349.2727 FAX 907-344-7095 I
SUPER SPAN
Super Span'Allowable Spans(ft-in)
Loads(PS )
Gauge Conditions 10 I 15 20 25 30 35 I 40 45 I 50
f l0-6 8-7 7-5 6-7 &1 5-7 5-4 54 4-3
SS UI80 7-6 6-7 6-0 S-6 S-2 4-1I " 4.6 4•-5
26
f 13•l 10� 9-2 8-I 7.6 7-0 I 64 I 6-2 5-10
DS UI80 10-1 8-i0 8-0 7.5 7-0 6-7 64 6-1 5-10
' f 13-5 10-II 9.6 8 6 7.8 7
-1 6-8 6-I 6-0
TS U180 19 6 I 8-t 7 6 7-0 6 7 6 2 I 6-3 5-8 I 5-6
f 10.10 8-10 7-7 6.10 6.2 5-10 5-5 5-1 4-10
55 U180 8-5 7-4 6-7 6-2 5-10 5-6 '. 5.1 14_
10
24 f 13.7 11-1 9-7 8-7 7.10 7-2 &10 6-5 6.1
Grade C DS U180 11.2 19-10 8-11 8-2 7-10 7-2 6-10 6.5 6-1
f 13.8 I 13-7 9.8 8-8 7-11 7-416-10 6-0 6-I
TS UI80 110.6 ` 10-6 8-5 1 7-10 17-3 6-1I , 6-7 6-5 &1
Super Span'Allowable Load(ibs./fLI)
Span
Gauge Condition 3'-0" 3'-6" 14'4" V-6- S'-0" � 5'-6" 6'-0" 16'-6" � T-0" 7.6" � 8'-0"
SS 11I80 1123 90 66 46 I 34 I 25 I 20 I 15 I 12 I 10 ( 8
26 40 35 30 27
DS ( UI80 1190 139 107 84 I 8 ( 56 I 47 37 0 24 20
f 198 146 112 88 71 59 50 42 36 32 28
TS U180 198 146 112 88 68 5I 39 31 25 20 17
SS I VI80 i 129 95 72 S7 46 35 27 21 I 17 14 I 11
f 204 150 115 91 74 61 SI 44 38 33 29
2Grade C DS UI80 204 150 115 91 74 61 51 44 38 33 27
TS If 209 153 117 93 75 62 52 1 44 38 33 29
U180 1 209 153 117 93 75 62 52 43 3 28 23
Notes: C Steel conforms to ASTM Grade C43.5 ksi minimum yield(24 gauge),and ASTdt A446 Grade E,80 ksi minimum(26 gauge).
❑For wind loading,multiply allowable load values by 133 or allowable span values by 1.15.
❑Calculations based on 1986 AIM Specifications for the Design of Cold-Rolled Steel.
❑FOR SPANS OVER FEET,PLEASE CONTACT YOUR ASC PACIFIC REPRESF.iYTAM
Loading Table Legend
Road limited by flexural bending stress
L-Span(Inches)
Ux=-Load limited by deflection
SS-Single span �
t— L Support TYP
DS-Double span
TS-Triple span
or More ��- L --— L L
//yy���� A5C PACIFIC
VI! A BHP Company Building Solutions in Metal
m ASC Pacific,Inc. February 1993 Pnnted in USA Revision 5M (PS170)
ti
.:a
-.;:'
• '_ - fir` ••�, '�
- ?mil � • � � � t ,•
- nl
FeaturingI ---T fj CCR��LITJCUII N
''
I
. . . the zinc/aluminum `got-dip alloy coating
which offers ua to four times the service life - g.
M.
of standard galvanized coatings.
C Full 36" coverage
C Lak-proof, weather-tight lap system
C Reduced flat area for increased load-
bearing capacity and ccnsistant, =Mc-
tive appearance
C Installs 20-5013/a faster '
C Cesigned for easy nailing or scraw-type Wt. S- I. S- I-
fastening Gauge (Itrsjft.=} (in.-/ft) (in.vft.) I (in.=fr,.) I(in.•;�)
C Complementary trim and accessories 30 1 .57 .01115 .0061 .020e- 005=
readily available 29 .70 .01 ca^ .0077 030, .007;
C Available in attractive colors or bare 25 -86 .0185 .0096 -0414 AC90
Zncalumea
Northwest Regional Ottice: 276-383-355. 2141 Milwaukee'Nay. P.O. Sax 2075, Tacoma, 'Nasrrr.gtcn 3aa01-2C75
wasaingtan State —800-2r-3-21 10, 8GG-562-8412 Western U.S. —800-s25-5595 Naticnwids —8CCI-37s-a7a1
Manufacturing Facilities: Arc^crage. AK 907.561-6060, 800-478-2727:1 Sookdne. WA 309-535-0600 :1 Regienal U.S. —800-625-2502
Western Regional Office: 916-372.6a51. 2110 Enterprise Blvd..West Sac.amenta, California 95691.3,L33
N. Califerria —800.952.5629 'Nes;ern States —800.952.5605 Manufac:unng Fac-lides: Las Angeles. CA G Phoenix,AZ
SouthwR3t Regional Office: 81 7-a8:-3521, 40e. E. Oallas Raad. Grape`rire• Tsxas 76C51 Call Collect
Manufamrirg Fac:liaes: Ocessa. TX. 91 5-363.3255 C Ltttte Rack. AR. 501.562.31 12 O San Antonia. TX. 512.55l-8366 Call Callec:
Corporate 1-feadouarers: 910-372-;3a51. 21 t0 Entararisa Blvd.. West Sacramenta, California 1°89:J493
+.
gp SS I U1f20 ..I 69 I a c. 26 117 11 8 16
111 71 49 36 23 2_
TS 18
Gau g s I U1f20 ill1 I 71 I 4g I 33 I 22 I 16 I t t
29 SS I U 1f20 ` 88 ( 56 I 34 I 22 I 5 I t 0 17
Gauge TS I f I t-2 ( 91 I 63 I 46 ( 366 I 2S I 23
U120 142 91 63 4- 29 20 15
SS I Utf20 ` 111 I 71 49 I 36 28 I 2-1 ! 18 I
25 111 71 4 28 18 113 ! 9
f
Gauge 1. 9 115 80 5� 4. 35 29
is I U120 I t79 I t 15 80 ( 55 I. 37 I 26 I 19
NOTES: Q Steel g_de conforms to AS TM Grade E.80,000 Psi mirtirnum yield.
Q For wind loading, multiply tabulated andlor calculated values by 1.33.
Q Allowabie loads tabulated are based on flexural stress ardlcr U120 deflection.
an ASC Pacific sales engineer for allowable bearing scesses.
G�racrg;Fabte•Fegen ,-
t Load limited by flexural bending stress
L—Spars
Uxxx--L oad limited by deilec-.cn
SS—Single span
Support i YP
OS-0cuble scan
L — i L - I
TS—Triple scan
-. L - i - L - - L -
C ASC Pacific, Inc. AuguS, t988 Pnnt2d in USA PC 6M
4 Ww-r
PPOFE?t:'c"a OF GRaS"a ui710H
tJg:.
tic Q .. Araa I aer Axis Y-I Axis Y-Y
B foot lx SIR) Sx(h) rx • Iy Sy(l) Sy(r) ry
tn. in. in. in. in. in.2 Us. in.4 in.3 in.3 in. in.4 in.3 in.3 in_
4.0 Z.Z50 16 0.060 L.057 0.1875 0.500 2.04 1.508 0.714 0.714 1.585 0.482 0.525 0.362 O.S?n `
64 2.250 16 0.060 Lori O.IS75 0.720 2.41 3.919 1.306 1.306 2.333 O.S6t 0.728 0.371 0.383
8.0 2.710 16 0.060 I.057 0.1871 0.100 3.06 8.7t4 2.178 2.178 3.1t2 0.9S8 1.164 0.5t8 1.047 I
14 O.a75 I.013 0.1975 1.t25 1.93 t0.310 2.702 2.709 3.t03 1.22? 1.435 0.649 1.045
t2 O.I05 I.158 O.t875 1.571 5.36 14.9SS 3.747 3.747 3.085 1.109 I.953 0.312 1.041'
1.0 2.210 16 0.060 1.057 0.157-, 0.100 3.06 10.308 2.211 2.211 3.3S- O.S110 1.029 0.311 0.947
14 0.075 t.013 O.t875 I.M 3.93 12.8Z0 2.941 2.84? 3.375 0.796 1.252 0.4?2 0.34[
t2 0.105 I.16a 0.I815 I.575 5.36 17.761 3.341 3.947 3.352 1.105 1.704 0.530 0.337
10.0 3.250 14 0.075 1.0?3 0.1875 1.310 4.51 20.244 4.041 4.041 3.972 1.158 2.092 0.846 1.104
12 0.105 1.160 0.t271 1.3?0 6.j3 28.100 5.620 5.520 3.3-Ta 2.731 2.560 1.1?0 I.202
PROMTH-S OF EF EUPIE SEC71OY
(A:i-s Y-Y)
Si:- flea in tensiur f44: in G�aAre,s;an
0 1 8 qa. t Ix I Sx(t) I S.c(b) ty ! Sy(I) I Sy(, ) Iy Sy(I) I Sy(r)
in. in. in. in.4 in.3 in.3 in.4 f in.3 irt.3 in.4 1013 in.3
4.0 2.250 to 0.060 1.50c" 0.530 0.741 0.451 0.513 0.32? 0.420 0.406 0.346
0.0 2.250 I6 0.060 3.?18 1.205 MS3 0.523 'O.1I3 0.345 0.434 0.41! 0.350
8.0 2.750 16 0.060 8.505 1.148 2.122 0.323 1.140 0.476 0.700 0.567 0.462
14 0.075 10.830 2.562 2.675 1.1?8 1.423 0.610 0.950 0.30 0.537
12 0.105 14.986 3.747 3.747 1.709 1.953 0.91:2 1.4?2 1.431. ( 0.374
1.0 2.210 16 0.000 10.308 2.045 2.241 0.594 1.006 0.353 0.441 0.447 0.352
14 0.075 12.SZO 2.716 2.835 0.774 1.252 0.475 0.603 0.555 0.454
12 0.10S 17.76! 3.?47 3.947 1.105 1.704 0.610 0.ISO 1.167 0.6al
10.0 3.250 14 0.075 20.244 3.611 3.344 1.80t 2.015 0.76Z 1.416 1.024 0.7S
12 O.IO5 22.100 _5.411 5.516 2.731 2.850 l.t?0 2.241 1 1.904 t.tl5
ADOMONAL PA2AeETE?S B t
_ 0 3 qa. t a .t _ Cv I r0
irt.. in. in.. =in.4 in.6 in. in. _ -_.._,_.- -..__''=^•:•. __jr
2.250 16 0.060 1.372 0.000720 2.600 2.745 2.903 - --
:6.0 2.210 16 0.060 1.211 0.070&S4 S.t70 3.101 3.t7l D
8.0 2.750 16 0.0--•} 1.371 0.001020 14.277 4.181 3.146
14 0.071 1.379 0.00?tOl 17.122 4.364 3.143
l2 0.105 1.390 O.OJ519a 25.161 4.321 3.937
1.0 2.250 16 0.060 1.072 0.00 Hao U.567 4.951 3.364 -
14 0.07; 1.076 0.002107 14.423 4.123 3.359
12 0.105 1.031 1).005792 20.361 4.931 3.347
1•i.0 3.250 11 0.07; 1.522 0. 4!3,2 5.493 4.723
1) n Ins 1 Czlt A.M,. _t._ 4: I.,1 1 .441 1 711
3 Ar?a far Axis Y-T A::s Y-f
8 ' ba: 1z Szit) I w hi rz I Eya Sy(I) 5y(r) ry
in. in. in. in. l.'ss. in.4 in.3 in.3 in. in. L 3 in.3 in.
4.0 2.250 16 0.00 0.?-= 0.LMi 0.E30 2.04 1.57 0.782 0-71-23 1.5_1 I.I=T 0.312 0.312 1.37,"
fi.0 2.=0 15 0.061 0.144 0.187S 0.720 2.45 4.=16 t.345 1.345 2.357 1.M 0.313 0.M L.
8.0 2.751i (6 0.060 0.144 0.IS75 0.1•)C 3.Oa 8.37a Z.-ill Z.ZI? 3.t4t 1.7?2 0.:3? 0.53? 1.41i
;4 )jt)71 0.370 0.IM l.l_S 3.3.; !1.0-1 2.76Z Z.75Z 3.124 2._51 0.57s 0.M 1.41_
I2 0.!05 [.02! 0.1975 1.S7a 5.35 t3.332 3.32: 3.`3 1.120 2.!'i"c 0.453 0.111 1.4:f
7.0 2.'s,} !S 0.')a) 0.144 ).tM 0.•?•?0 3.Is W.4?s 2.121 2.3i21 Z.41S 1.[Z5 0.34a 0.3123 1.112
I4 0.07= 0.170 0.[a7S L.t'_5 3.33 13.070 2."0S 2.?t,S Z.445? 1.417 O.S�r} 0.No t.E2'
.2 0.105 t.OZ'- 0.1271 1.171 5.36 1S.151 4.0_1 4.035 3.313 2.'.12 0.705 0.70S I.E30
10.0 3.=0 14 0.071 0.17C 0.L971 1.350 4-S ZO.525 4.M 4.101 M11 3.3EZ 0.977 0.377 t.577
!Z 0.10= 1.021. 0.IMF 1.310 s.43 'IS.5-7 5.70? S.70? 3.?3a 4.7E7 1.237 1.237 MS3
Pa$?c rt:5 OF 877_C7I9F S rI,N
Tap ^!Q. In Colic. f lQ. [d "03C. ' Q: Side ia Imo 1.°it aid? i,� crp-
Q 8 ga. t fs S:(':) Sx(h) I: 1 S.t S;: Iy I Sy(:) 5 (r) fy Sy([) Sy(.
in. in. in. in.4 + ir..3 in.3 ( in.4 ia.3 in.3 in.4 in.3 I in.3 in.4 I in.3 in.;
4.a Z.214 t5 0.Oc0 I.S7S 0.713 0.777a 1.57.`. 0.776 0.713 1.053 0.=30 0.355 [.0.3 0.3a: 0.3E
0.0 Z.Z50 1.6 MS-3 4.023 1.235 1.321 4.012 1.3214 1.23S 1.OS3 0.371 0.157 1.053 0.367 0.17
8.0• 2.710 Ia 0.060 8.77? 1.922 2.1-3 a.M 2.1=3 1..3102 1.510 0.4?7 0.472 1.5[0 0.47Z 0.
l4 0.071 11.0-1 2.435 2.a.37 1[.047 Z.687 2.4:S 2.053 0.'s7-7 0.a'75 2.0So 0.505 O.a2'
2 0.tOS 15.332 3.3:3 3.M 15.3s2 3.M M. 3.3-a3 3.[is 0.M 0.953 3.(?3 0.?S3 0.�5
9.0 2.250 E6 a.O6J EO.4?4 2.0771 2.ZQ3 10,4a4 2.2?1 Z.071 1.053 0.377 0.368 1.053 0.38a 0.37'
14 0.075 13.070 2.SSO Z.814 13.010 2.314 2.360 1.33- 0.430 0.455 1.354 0.4"ca 0-=?
I2 0.145 la.t_7 4.1. 4.035 IE.157 4.021 4.O3S 2.012 0.M 0.701 2.02 0.705 0.70`
10.0 3.250 14 0.073 20.448 3.342 3.124 20.44a 3.324 3.343 2.727 0.71'i 0.5E-3 2.727 Mal 0.74:
2 0.t05 28.147 5.088 5.561 28.547 5.561 5.058 4.322 1.IV 1.110 4.382 1.IN I.tZ4
B
ADDITIONAL PARA:1:752S
Size _. -
0 8 51. t N7 I C'l Theta
in. in.4 in.4 in.6 deg. d�gr��s
4.0 Z.25C IS 9.0z0 t.013 0.007729 2.535 33.752
6.0 2.25:) 1; M;o 1.197 0.000sa, 6.080 23.741
D
8.0 2.7°•' 16 0.OE0 2.939 0.00E030 17.755 [13.E4(
[- 0.p:3 3.'77' 0.002(')•) 22.(?; [t.)6•}
12 0.!iS 5.l0_ 0.005723 30.5:i 20.!49
1.0 :.if., lE 0.9:0 2.41") 0.01Mac. 1-.412 12.755
[- 1.07; 3.057 0. 0') 17.9':3 [1.841
..25.) !- ).07 6.987 i.1(, 1 5z.!:? 1?.a;- I L O
�f-t'CGG�?WlGftiT � ��
COLUMNIS WITH COMBINED BENDING AND COMP.RESSIM
InDu Darameters: 4SS 20 cra
Depth = 4 A' Kx =
Flange = 1 .25 B` Kv = i
Lit) = 0.3 C ht = 1
Thickness = 0.0345 t Lx = 5.00
Radius = O.0625 R Lv = 5
E _ 2950 Lt =
G = 11300 Fv.f, = 33
P = 0 Mr = 0.00
Fu = 50 My = i;
..,e a:.r.,t;I,t:k* :tyr+ -r.r.t .t,t';t«,n A t..«:t 71 a;k:kti;t
* RESULTS. . . . . . . . . . . . . . . . wind increase N
Pa = 1 .49 ki.ns 4SS 20 cra
Ma = 3 .5.3 kin-in Section will work
* (E(T. C5-i; = o.0ii
ifq. i;5- i = 0.00
(Ea. C5-3) = 0.00 <--Controls
a«a.�.......... Y:t=:ti•.;�..t..,......+.*i-,+�.i;y.i�.«''';N+:*;:++:«' .«t�.;tt{;r .tF.r..«::+.,s i.�,::«;.w!-,...�....
V'28 Charts and 7hbles for use with the August 19. 1956 Edition of the Cold-Formed Specification
N al Inc) M=oo�TT 'r�mp9cj to in 71,7NOpp in al a2,n [M-1��T_ `I n
N X C S Cl)Oi CMD J' c�'7 llp CaI� �x"J Lam'] tun "1 uIn U'3�J CO(N7. C.3 C7Nt, �
W ^000 0000 00000 0000 0000 0000 0000
E ONM ONTuIO NT1n to o00�+N Min in<z c2 t2,2
L C uI Co to tL MM P9 C]M mZ Cl Cl �n cD CD c MMMM
M M CJ M N N CV N N GV N N N -- --�^+-� ^+ -+.+.-+ .-�.».+.r -..-..•.
V -
Im,c6 NO to N ul=to e� O C-O -+.+ ONM -
.,.y C a o0 o000 CJ COO cD�p t;7%R cD 80�0 NMMM az- 7 NN
T TTT TTT'T MGC7MMM MMMM NN"c4 ----+ - ----
O
M M M C-00 �D-'oo --�
3 OOMM QlOOC1 ulN00 ru7 c)
r CL^tf]l�C7 NL�G9 cD N In.•O Mof C'T l� 2000 00 C:J T 11N-»
I U OTNtD MTO NOC-cp ul MNN� -. O 0000 OCOO
u7TMN 000 0000 OOCO OOOC OCOC
E ¢W o0 T N TS NTM N•- OC]
�•W= s T l in e+ O O CE O oo-+M M N �+^cl, In m'r t-8 C0 00 J 7 T
= TTCC oO 00 C-MN mMNe.,�, P cj NaO TN o! oc TUJN-+
yW t7 O.T..-.Cp pC-Mppp+ooO CpO OoM.pp�OJp p-- O pNSBpO ppp p00 Opp op
Ms 0000 8000 0000 0000 0000 �C!
O 0000 0000 COOOO OOOC COOL OOCC 0000
O _
+� G7C1�0 0--000 C---t�0m co CV Tc7 tz 'n In COONC7 0000-�
U 00O N--N Tu0TT1n til-C-L- u0�n in In QQfI CC1l C90 ko
U E O �OOuI TTTT TTTTT MM Ili M MMMM MMMM TTTT
� r.� 0000 0000 00000 0000 0000 0000 OOOC
x g:-C.'1.O ITN t- OOOM LAN O.-+In0 wn Min Nan C.0 u]u7 GEC
C x H O0C[R& o0C-La ul --O oo C-C- u7TM c- u]MCVN OC-C�t'i Inr NN
MMMM NNNN MNNNN NNNN NNNN NNNN M-MMM
CCCCD OOCC OCOOO CCCO C000 OCOO COOL
f d
C-O CITC-O ��o9 ul C- cl—Vu r1M L7 C- ::JONT �•
d r O:CO :100-- NNN �c+L'l L9 un NNN MC'a'T L^,LL'0J
u:L:uI LC MTTT TTTTT '_+IMMM MMMM MMMM M__MM
O C000 0000 OCOCC CCOC OCCO OOCO CCCC
L
OIL:NJ ululpp t- inN Mtn �n pppp00Nr.- n CfL:
00 M 0 op M C-00 u:-- C-N O M M N cQ 00 O--M OCi
OMC-M JMQIti ��G'I C-t� =LnT twin T:'7
A ✓� MN-... --00 000000 COCO OOOC ,...000
.x C�OC OOCC OCCCC COOO OCCC COO^ OCOO
M.NOO T'..'1 ---- ---O MNML� � ^9
I[::CMCf TM-+00 C- HOC- O'.'.TT NOoO-- t-M In� .C--•In
r OC 00 OON O::NO O OC- oo'J L'7T eo T'�^M uI T-'M rMM�V
OOCO 0000
0000 0000 OOOOC OCOO OOCO OCCO OOOC
L�oOO v..W OOMp L7 •..+-OC-N ONOIn O-.t— MNOOT
pp MT tiM--r u]V'i Qf-00 OC,j TC-L--oo Nr-T-�O L�000
N O Cl COO TTuIO '+ NN C-^L`0000 `STT T t C 7 -L7oO
x N.n _
W NNNCV NNNN NNNNN ----+- .- -- -- -.- 0000
Z ?X Q _N O t-In go^D =uJ O�C'o M�.'7 In,= T T u]u7 rA^J
L-��n--}}00 ee�� 001� TEA CIN NNCC-+ T^A�A'�!
y C N L'l 111 N C-M O C-�O 00 C7 Cl C-u]T :D T M:`l T oO c4
'x
ZZOaoM- TO--- - --- V- 3 1= c7C-C-N -�ooTV
QLL x OMON C'-+O� MTu0Tu0 ==in 00C-m eT Moo CIN
MN-+u10N------
'j'{L c2. RE--cn C-t6 TM OTC+l NN N 000 0000 0000
U!-
Z O:1 N :D M c' C- Oo pp C- G7 --77��'V C�Gl cD N in in a
0Tp QCON CIM N--Op, �JMq NN� NNNN '�^VO
ci aO QIONL�C' 9ob T-. 011 N. . C- 000 7JO o0:C
uO TCVN TMN-- MMN--- N-+--
3
m �, Coco �} )CD M InCDM •aMo2 �0---• ooT--M �o in
�, Op O 00 MOO Npin NN T--}}M u] T:JO Ot-O-r O---1T7
in 12[� N C-ul �C7OT C-uOTM "..�TMCJ �MCJN TN^J.r
-r00 00 --0000 0000 0000 0000 0000
ooinul oouljul oOU13LOL7 Oululul oininin OulunIn Ou.u0ul
in Inc-r �nIntir- In Intititi Intic-ti Intit-t- antic-r- kc:c tiN
C-C-MM C-C-M C`'] C-C-MMM C-:JIn t-I t-:'MMM C-M^7M
G� 0000--n0 000000 0000000 OpOOO 00000 00000 00O^O
--00 --00 000 OOC --000 000 LOCO
Lc: ==e=O C000 CC000 OCOC CCCO OCOO OOOC
N
in In in o un in In o U'j,n in o m u0 In o n LO oo in in o m in Ln
..-M_O C-CM M_OI'-O- O1'- 0'[� O[�• ^�[-•-
�00 00 --COC -'0 C ,--.COa .•-COa C^.�a
G OCCO 0000 00000 OOOC OOOC 0000 OCOO
UI O In LO in
pp
d C O uull uOJ in
..
cn
Fca o 0 0 0 0 0 0
THE RIGHT BUILDER FASTENER FOR YOU ash~qf�
Buildex is the preeminent leader in metal fastening standard and specialty designed fasteners suggested —
systems.We are continually developing new fasteners, for a variety of applications.
systems, and fastening techniques to solve today's Buildex Traxx`*and Teks, self-drilling fasteners exhibit
metal fastening application problems to increase your excellent strength, sealing, and performance features
productivity and the quality of your fastenings. not found in any other self-drilling fasteners.
Effective,consistent, and reliable fastening, are the Technical assistance regarding Buildex fasteners
results of choosing the right Buildex fastener for your or applications is available by contacting Buildex's
specific application. This BUILDER METAL FASTENING Application Engineering Department toll-free at
SYSTEMS SELECTOR GUIDE is a representation of 8001323-0720.
*ULTIMATE PULLOUT VALUES *ULTIMATE SHEAR VALUES STRENGTH
(POUNDS) (POUNDS) CHARACTERISTICS
SIZE POINT 26 24 22 20 18 °h16 E 14 12 1/8 3/16 114 SIZE.POINT 25.26 24.24 22.22 20-20 18.18 6E 14-14 12.12 1/8•1/8 V16.3116 114.114 811n1mmm
T/2 119 193 265 298 491 703 959 1555 Fastener
8.18 12-14 T/1 432 703 753 1018 1452 Torpue 0ttppto
T/3 120 19I 239 285 470 663 9t0 1�4 2287
in 148 241 311 357 565 826 1111 1798 14.14 T/1 511 849 885 11" 1764 M� Strength Fastener
1'.16 T/2 131 214 272 368 547 784- 1033 1653 8.18 T/2 294 496 560 740 1060 1078 Fastener TwmM (Inch. SMu
T/3 1241 208 266 299 499 708 967 11474 20» Site IPowosl PDanasl. IP4etlsl
tI}24 T/3 721 200 251 333 495 701 900 1375 2070 2672 to•16 T/2 312 aT8 589 B30 t206 t268
T/1 155 261 338 39D 649 908 1259 t9a9 t2.14 T/2 365 600 6- 898 1370 1758 2131 8•18 15ir 42 1000
12.14 T/2 156 243 283 375 605 8a81 118t 1855 259 352C 1-11 T13 730 1090 1210 1214 10.16 2100 61 1400
T/3 142 211 289 341 551 757 1063 1531 2420 2998 1016 T/3 728 1266 1540 1552
10-24 23W 65 1500
12.24 T/4 487 5% 913 1532 2441 3485 38a4 10.24 T/3 751 1208 1554 1694
TIE a87 699 973 t527 2207 3701 3999 12-14 2800 92 2000
T/1 208 329 428 562 800 .151 I 12-14 T/3 769 1358 1620 1970 1986
t2-Z4 3250 100 Zt00
1/4-t4 T/2 t66 265 3t4 a30 645 922 n52 4693 /4-t4 T/3 930 1aa2 2t00 258a 2650F
T/3 ta1 231 293 346 513 NO 1145 1858 1 2406 a55C 5°33 1224 T/4 20481!4.1a385C 150 2600
7t40 225 27t 3Ti3 556 181 1005 1 1678 1 2542355a 1/4-2
1/4.20 T/a 554 788 tn5 t90.i l 2580 a297 14589 t2•Ta T/5 - 2720 275? 0 4215 t68 2700
Builder Engineering Report#547 •Note:An aooropnare safety hector should Je applied to the ultimate test value& Budder Eng,nesntp Report=s 583 a 583A
'"THICKNESS RECOMMENDATIONS FOR TRAXX/TEKS*
.NOMINAL SHEET
SCREW STEEL. 500 ' soo
SIZES `"GAUGES r
n
MATERIAL aoo 1 .:
Common THICKNESS
Thread Decimal Sheet steel Decimal IN INCHES 300 4
Diameter Equivalent Equivalent ',
Gauges 250 2se :ssa
Drill 25
capacities p8 210 ,`�216.-210 210
#6 .140 26 .018 may vary with 15 ■
special flute150 .100 .no no ■ � ':', ' TTs
#7 .150 = 24 .024 1 x7 D90
n
lengths.
#8 .160 030 .° , ■ , . , , , D6o 100 110 o Tin 110 .110
AM
#9 .180 20 .036 g 1 .035 .038 D35 m5 .035 `-
#10 .190 #10 #12 1/4 #6 #8 #10 #12 #12 #6 #8 -10 #12 1/4 #12 1/4 #12 1/4 #12
#11 200 18 048 SCREW SIZES RAXX TEKS/2 TRaxx/2 TEKS/3 TRAXX/3 TEKS/4 TEKS/5
#12 .210 0 16 .060 FASTENER DESCRIPTION BREAKDOWN
#13 .230 � 12 .1010 14 . 5 5 EXAMPLE:
'/. .240 10 — 16 x 3/4 HWH TEKS/3
#14 .250 NOMINAL THREADS SCREW HEAD DRILL POINT
10 .134 SCREW SIZE PER INCH LENGTH STYLE TYPE
DRILLING TECHNIOIlE
BUILDEX TRAXX/TEKS ARE SELF-DRILLING initial drilling,enough pressure must be applied while keep-
FASTENERS...THEY DRILL, TAP AND FASTEN ing the screwgun and fastener perpendicular to the work
IN ONE OPERATION. surface to prevent angle driving or walking. Drilling must
be completed before the threads engage the material.The
A separate drilling operation is not necessary. However, correct fastener based upon the total thickness and type of
specific installation procedures are necessary to insure material to be drilled and fastened for an application is very
correct fastening results and to achieve published perfor- essential. Never overdrive the fasteners or install fasteners
mance values for each fastener at an angle to the work surface,as this may significantly
Important:A 1900 to 2500 RPM screwgun rated at 4 amps reduce product performance or lead to product failure.
or higher,equipped with a properly adjusted depth-locating Contact Buildex Application Engineering Department toll-
nosepiece, must be used for correct fastening results.During free at 800/323-0720,for any specific information necessary.
A Prodrllled
Top Material Hole Diameter Is latpsr
Top Material to be Drilled •l I•than Screw Threads
to he
Drilled L—
WW a Insulation Void or Insulaflan Dulled of Punched 100 Material
L_
r—
Bonpm Malatial Total Thickness Bottom Ma/etla/ Total Thickness Bottom Material - Total Thickness
to be Drilled to be Drilled to be Drilled to Do Drilled to On Drilled to Do Drilled
l
Ra�sef Standard Velocity Fastening Systems
i VA*HEAD DRIVE PINS W HEAD ORIVE PIN -
Fasteners &
S �"� 6"ll ark
izes
...« U0101 tayl! w..1a.
1726' %
2327 M
2229 2w 2 'fir
W-20 THREADED STUDS =0 Sri 3 It" 1746 3a1. 3t
1th +ri Mu
I =7
(.1<tal.e wens Tles4 $fee" shot
somww Lamm taps V'M* sweater,
240/• tut * "n EYEPIN 331 e• t'/1. tw rh
24= t i. M 3ti yu 33 J 1"h. 1 M
2401• 14L 1 46 •lu O _i 3318 2'h. 2 r,
2464• 2 1K sr Nis _ 3320 7'/.• 3w r�
I 3601 1rh 1K It'.
3i1'-16 THREADED STUDS
at
24V13 1% % HEAD DRIVE PINS I
24259 11h % T V. Nis
2429a ZY 1 IY. -M
2430a 2% 1V. 1W sh• Ltalq 9"Mil Tisrr4 art f
2431 3Y4 2 1Y. Hu ataip iewsll asr aai Number +s•�sd �n Wfs @'
'XnuAed Shank 1.Mr LMte laptlt La.attr 03t.Z6 2%
f 3329 2Y. 2 "l.. a 343a• 2% 1 V. 1 Y.
• 3330 Sri 3 4.. •3439 2'% 1 Y. 13h
t 1311 1 ri 1 "Jr 341" 2% Y. 1 ri
• 3335 +K ++t �f'• e ® Ustad <S>Approved
I . 3336 149
I
I 1737 2%
1
i **Available In Stemless Steel
I
i
�4T
Tensile & In Steel valu
The values
� es shown are for properly the steel and minimum fastener
driven fasteners where the point of spacing artd edge distance re• !
Shear Values' the fastener aomptetely penetrates quirements are met
i
• Est st«I Mellonimam Maio
IMe.ater resumes
t L.) Teri'« Oar Ted« ear I Tussles now Tendon now el '1 slad44a
'hr 22�t 3538 2556 3538 ]2813 ILIA — — t• ri'
1556 4396 2e32 4396 1 2e16 3396
2483 t762 1164 4762 36ti0 47e2 — 11A ri
2928 1 5246 a3W 5966 et:'36 5966 — — 154' ri
f V. 7108 9020 aSW 89 Ja S2e8 897t 76b 8974 1�Y ri
llofea
General 1. All values an aVerege ultimate loads try pounds.Industry standard is to apply a minimum factor o/salary 9/4c1
ow at a aultaole meriting load.
i Specification Z reas/oTb sheaf values sm for-the fastener only weed steel of other mgraffole attached should be In.est/gated
- arstelyIn accordance rllh secvptad design edtefts. -
' Powder-Actuated Fasteners— 2. Tests conducted In ASTU A•7 steel with smooth shank lastenert. 4 �i
Fasteners shall be manufac-
tured from AISI 1062 or AISi In Concrete moo•'
1065 steel, austempered to a The values shown are for properly where minimum fastener,spacing o do
minimum COr@ hardness Of Installed fasteners driven to the and edge distance requirements �000g or o^
4 cA .C
50-54 Rc and possess the fol- indicated penetration depths and are met. f(cp.o to/T+
lowing minimum properties: o.�e Tit 1
Tensile Strengths 270,000 psi a"'k 2fee yea tram frd.•r �'
r ela.slar Matretlr $00
Shear Strength = 162,000 psi r14a err To—
All fasteners shalt meet the r•1 1+••1 Tsa14s ierr T4rJw a..r T. lr nr. c
requirements of Federal $ a- •t1. ' 1Z2 j4J6 ,fait 2/7x 1Tra 22ot 179x 3171 3•,i P Iv. t3aa nze t6.t xoze z3ze 2oet 2122 3s7e
citfcations FF-P-3958 and , w1e teat 12sa zlzz tut 2sa6 19et we t.
CO-Z-3258. Fasteners shall "/" 1v. ,site 2188 nu Z92e I 260+ t 3AI41 2310 1 3194
be as manufactured by Ram- I a.a lsae I11e 1714 12e0 t&AA /e71Z zssa 4, 1
set Fastening Systems, Divi- '1'• IV. 1525 221a 201 2532 2102 Zga4 3010 3310
siOn Ot Olin Corporation,275 1» 27" 29st so7a 3323 31s2 3952 31ze •+2+ 6. t
Winchester Olin
Ave., New 'I" 1w 31ee 417 157a 427r1 _Z a740 420A s2oa
Haven, CT 0651 1 or K /w z6ao 2eao 24'a 3osa 29eo salt 3zze stez a.
1v 32so 3e7e sass 43oa .zoz .sa4 •2zx s13e
approveC equal.
Mau. ry y 1:
1. All r Iu arm••+••9•vlbn,ara bads/n .rude.Indust standard/s to 4000•m!n/mu/n hctor of arYst o/
I - rr.+st•awrrou..ora/ng lo4d.
A. Inal
A.—L'_.,..--�.-..r .1—a r rwnlur•.I en.nanaaA,r n a r!n e/T•a
Installation Instructions
Y :r!.bµ4=. .w�i� `. --ate:--�� �• .
�"�� �''� 1�'-:`-,`' i'`y•t` r��`+�����•,c~:•j r•ass,c
.tv "v.^t•_ >�: p.e-�t��.�Trrr^"..^.+•� mil.' � 5�
Kwik Bolt Average Ultimate Tensile and Shear Loads'(Lbs)
Concrete Strength I 2000 PSI ( 4000 PV I a000 pit
blame or Emttedtnent Tension Sheer Tension 975 Sheer 1
Ua' 1 Tension Shear'
2 I � 165533 270� 612 � 23a9
ye. ft. I 2612 I' I �9
3350
2245
21rY 3075 I 107
3748 3900 I 5107 2810 I 6256
4W 3590 3792 48M 5419 I 5a00 6286
iR- 2v4' I 45a5 74.1•a 5510 Sala
6 - 9000 I $897 I 12300 I 10232 I 1533000 I t9 2Y
5410 71198 6600 It562 77C0 13500
4/R- 7000 71198 120M tt562 I t4500 t3500
71R- I 9000 I 113378 17000 I t5437 21Co0 15437
31/a' i at55 73257 10150 i t0860 18t02
7133
- I
16000
11700 I 13257 I 16500 I t7133 17800 i 18102
9 t5195 23500 t8a66 2SSp0 21009
t' 41R- j 14000
II
II 1cow I II 2C500 II a3218200 t 23ss1 7t2 10' 200 3"91 i2
1Va' Stq' 1 IM5 I 4 94
36750 356a0 312CO25100 3984 34800 5t95
101rt 4963 409W 356ao � 4959881n-
35680 Atwuat 78 psi
Strengtns
z178 pat •Shear values are minimum mean values at each embedment baser
a027 pat 6119 pat on failure across threaded section of the anchor.
HKB-Kwik-Bolt Allowable Worsting Loads(Lbs.) Stainless Steel Kwik-Bolt-Allowable
2000 psi '! 4000 psi 6000 psi Working Loads(Lbs.)
Anchor 3000 PSI Conerom
Size Ertlttedment '�� Shaer I Tension Sheer I Tension Sheer Meteor ilntted.
tla ilia 240 410 380 ago adp 800 SJu Oeptn Tension Sheer
2?12 570 ai0 870 850 820 600 Ua' t+e 320 I 550
34 15e sea 940 590 12 0 700 1570 �- I ISO! i 470 t070
21r2 770 940 970 t280 t110 1570 iR- 1 21/4 1 970 2290
41R 890 950 I 1200 1350 1350 '570 gy- 234 I tape V2 21/4 1140 ta60 1380 080 1710 23Q I 3t4p
314 1750 1880 2380 080 MM Dap y4' 3114 i 2010 I 4250
8 =0 2220 3070 25a0 I 3820 29W
1' dt
294 1 350 2800 I 1650 2890 1920 3370 R I 4060 6970
ttrt 1750 2800 3000 890 3020 337p 1114' I Sin 78t0' I 9960'
7114 'CiOfKrell '
2250 3340 4250 3860 5250 38M engtn uses for t V4 Oia. .740 pal
3t► 3t/a Strength
5 29 0 3310 41 0 4 80 24400 4330
9 4000 3900 I 5870 4620 5900 5250
1 _I 4350 6S84400
7 541
4000 6720 512 8020
7 5860 8720 5860 8030
70 4550 8840 5860 8620 5860 9100
t 1I4 5.,2 4750 9190 5750 8920 TWO 1130p
a111 9270 9960 I a650 8920 I i1100 1
1770
tOtR 6700 99W 10220 1920 11100 12400
Combined loading—combined loading should be calculated on
straight tine reaction diagram of pure shear(Fs)and pure tension
(Fr),teased on the interaction equation below.
FS appld Fr applied
Fs allowable Fr allowable
12
COLUMNS WITH COMBINED BENDING AND COMPRESSIO\'
Input parameters : 4C16X2 . 25 v40721 .mdd
Depth = 4 A' Kx = 1
Flange = 2 . 25 B ' Kv = 1
Lip = 1 . 055 C ' Kt = 1.
Thickness = 0 .06 t Lx = 9 .75
Radius = 0 . 1875 R Ly = 9 .75
E = 29500 Lt = 9 .75
G = 11300 Fv, f_v = 55
P = 2 Mx = 0 . 00
Fu = 65 My = 0
+::r;rk;t;r:�<:r:��xw:t:r:�:r:t+*;rr:t:�•r;;t;�*t***:r:rrc �:<:t:r*;r:tt:r:tt*+:�t�::tt;:r�;*;t*:cx:t:t*x;t:t* tr:rw
RESULTS. . . . . . . . . . . . . . . . Wind increase ? N
Pa = 1 . 82 kips 4C18:X2 . 5
Ma = 7 . 10 kip-in Section will not work
* (Eq. C5-1) = 1 . 10 <--Controls
* (Eq. C5-2) = 0. 32 Group 1
* (Eq. C5-3) = 1 . 10 Case 1
***Y:KYcyc;t Yc Yc::Yc 7:)C:Y*Yc Y::t*Jt;t 7:�;Y:yS::�c Yc*YC 7F*;'.'..';*7:y:*Y:7t f.yC Y;*�;'.'.'!:�:Ys�c+;7F 7:;t;ry;;c;-,,•YC:k*Yc 7k*;t*Y:;k�:
COLUMNS WITH COMBINED BENDING AND COMPRESSION
Input parameters : 4C16X2 .25 v40721 .mdd
Depth = 4 A' Kx = 1
Flange = 2. 25 B ' Kv = 1
Lip = 1 . 055 C ' Kt = 1
Thickness = 0 . 06 t Lx = 9 .75
Radius = 0 . 1875 R Ly = 5 .00
E = 29500 Lt = 5 . 00
G = 11300 Fyefv_ = 55
P = 0 . 51 Mx = 6 . 06
Fu = 65 My = 0
*Y:Yc7;Yc Yc Y:it*Yc Y;:t Y:7C Y:Yc YC 9:Y:1c Yt is is�:�c�;*Pt is Yc*Y:Yt�:yt t�:�c �;*�C Yt Yc*�c Y.*7C YG�Yt 7C:k 7t k Yc*Yt Y:YC Y: :K Yk Y:X' *:✓. Y: +:YC Y:
* RESULTS . . . . . . . . . . . . . . . . Wind increase ? N
Pa = 7 . 85 kips 4C16X2 . 25
Ma = 20 . 65 kip-in Section will work
(Eq. C5-1 ) = 0 . 32
(Eq. C5-2) = 0 . 19 Group 2
* (Eq. C5-3) = 0 . 36 <--Controls Case 1
COLUMNS WITH COMBINED BENDING; AND COMPRESSION
Input parameters : 4C16X2 . 25 v40721 .mdd
Death = 4 A' Kx = 1
Flange = 2 . 25 B ' Ky = 1
Lip = 1 . 055 C ' Kt = 1
Thickness = 0 . 06 t Lx = 9 .75
Radius = 0. 1875 R Ly = 5 . 00
E = 29500 Lt = 5 .00
G = 11300 Fy. fv_ = 55
P = 0 . 255 Mx = 12 . 12
Fu = 65 My = 0
* RESULTS. . . . . . . . . . . . . . . . Wind increase ? N
* Pa = 7 . 85 kips 4C16K2 . 25
* Ma = 20 . 65 kip-in Section will work -•
A (Fa . C5-1) = 0 . 53
(Eq. C5-2) = 0. 34 Group 2
(Ea . C5-3) = 0 .62 <--Controls Case 2
COLUMNS WITH COMBINED BENDING AND COMPRESSION
Input parameters : 4C16Y2. 25 v40721 .mdd
Death = 4 A' Kx = 1
Flange = 2 . 25 B ' Ky = 1
Lip = 1 . 055 C ' Kt = 1
Thickness = 0 . 06 t Lx = 9. 75
Radius = 0 . 1875 R Ly = 9 . 75
E = 29500 Lt = 9 . 75
G = 11300 Fy, fy = 55
P = 1 . 27 Mx = 1 . 34
F u = 65 My = 0
* RESULTS . . . . . . . . . . . . . . . . wind increase ? N
* Pa = 3 . 39 kips 4C16Y2 . 25
Ma = 14 . 00 kip-in Section will work K
* (Eq. C5-1) = 0. 46 <--Controls
(Eq. C5-2 ) = 0 . 13 Group 3
(Eq. C5-3) = 0 . 47 Case I
Y. .0 +:7k:K 7k 7k r .. Y. :K :K:K:KY: ;K*:K:K YC :K :K*+::t:K� *y:*Y: :t YC f:Y: �' ;k ;KW. :K YC:t:K it:K*:t:k�C Y.• :k* ** Y. �C!: t Y: !:*:k V:*:t ** 7t :t *
ATTACHMENT NO. 6 Pacre J
COLUMNS WITH COMBINED BENDING AND COMPRESSION
Input parameters : 4C16X2 . 25 v40721 .mdd
Deoth = 4 A Kx = 1
Flana_e = 2 . 25 B ' Kv = 1
Lip = 1 . 055 c" Kt = 1
Thickness = 0 . 06 t Lx = 9 . 75
Radius = 0 . 1875 R Lv = 9 . 75
E = 29500 Lt = 9 . 75
G = L1300 Fv, fv = 55
P = 0 . 635 Mx = 2 . 68
Fu = 65 My = 0
mow;.;W wwy;w;v;Yw W wW 7;RYC:.:K Y:W W:C Y:X:t."x:r(Y::k�:W kYC Y. ww�;;k R'w 7C�;:t Y:Y:Y:�c 1C Jt Y:YC�:7k 7:y:✓;q y ;v *;+;W W;k�W YC 7;Y.'
RESULTS . . . . . . . . . . . . . . . . Wind increase •? N
* Pa = 3 . 39 kips 4C16X2 . 25
n Ma = 14 - 00 kio-in Section will work
w (Ea. C5-1 ) = 0 . 36 <--Controls
(Ea. C5-2) = 0 . 12 GrouD 3
* (Ea. C5-3) = 0 . 38 Case 2
EXAMPLE CALCULATION
Basic parameters and properties :
r = 0 . 218 radius to the center of the material
alpha = 1 . 000 ineffective area reduction factor
a = 3 . 505 straight depth
b = 1 . 755 straiaht flange
c = 0 . 808 straight lip r
u = 0 . 341 curve
A = 0 . 600 Area
a- = 3 . 940 depth cl to r_1
b- = 2 . 190 flange cl to cl
c- = 1 . 025 lip cl to cl
J = 0 . 001 St . Venant torsion constant
Ix = 1 . 508 Moment of inertia about x-axis
x- = 0 . 888 Distance from centroid of the section to
Iv_ = 0 . 482 Moment of inertia about v-axis
m = 1 . 371 Distance from shear center to centerline
CW = 2 . 594 Warping Constant
xo = -2 . 259 Distance from centroid to shear center
rx = L . 586 Radius of avration . x-axis
ry = 0 . 896 Radius of gyration, y-axis
r() = 2 . 902 Radius of gyration , polar
ro^2 = 8 . 422 Radius of gvration, polar, squared
Beta - 0 . 394 Torsional-flexural constant
CALCULATIONS BY MARK D. DUNCAN , P. E.
ATTACHMENT NO. 6 Page 2
Compression capacity:
Determination of Pa (Section C4) :
Since the channel is singly symmetric. Fe sha71 be taken as the smal.
of Fe calculated according_ to Section C4 .1 or Fe calculated accordin
to Section C4 . 2 .
Section C4 . 1
Fey = 17 .080
Fex = 53 . 4699329
(Fe) l = 17 . 080
Section C4 . 2
Thetaex = 53 . 470
Thetat = 12 . 531
(Fe) 2 = 10 . 855
Therefore
Fe = 10 . 855
Fy/2 = 27 . 500
Fn = Fe
10 . 855
Determination of Ae :
Flanges :
d = 0. 808
Is = 0 . 003
D = 1 .055
w = 1 .755
DO = 0 . 601
S = 66 . 727
S/3 = 22 . 242
w/t = 29 . 250 Case II
Ia = 0 . 000
n = 0 . 500
Is/Ia = 400 . 227
k = 36 .726 <= 5 .25-5 (D/W) = 2 . 2443
k = 2. 244
C2 = 1 . 000
C1 = 1 . 000
Lambda = 0 . 394
p = 1 . 121
b = w
1 . 755
SO = 29 . 250
Web:
w = 3 . 505
w/t = 58 . 4166666 OR < 500 [Section Bl . l- (a) - (2) 1
k = 4 .000 (Since connected to two stiffening elemen
CALCULATIONS BY MARK D. DUNCAN, P. E.
ATTACHMENT NO. 6 Page 3
Lambda = 0 . 589 < 0 . 673
p = NA
b = w
3 . 505
w/t = 58 . 417
Lips .
d = 0 . 808
k = 0 . 4.30 (unstiffened compression element)
do = d ' s (for simple lip stiffener)
Lambda = 0 . 414 < 0. 673
p - NA
ds ' =d = 0 . 808
do = d ' s (Is/Ia) <=d ' s
0 . 808
d/t = 13 . 458 < 60 (section B1 . l- (a) - (3) )
Since flanges , web, and lips are fully effective:
Ae 0 . 600
Pn = 6 . 510
0 Die C:ac = i . 920
Pa = 3 . 391 kips
Bending capacity:
Members in bending, Section C3
Ma = Mn/Omegaf (Eq. C3 . 1-1)
Mn = The smaller of :
<=ScFy or (Ea. C3 . 1 . 1-1)
<=ScMc/Sf (Eq. C3 . 1 . 2-1)
Omegaf = 1 . 67 factor of safety for bending
Sc = Elastic section modular of the effective section
calculated with the extreme compression or tension
fiber at Fy.
Sf = Elastic section modular of the full unreduced sectio
for the extreme compression fiber .
St = I/y
Sfx = 0 .754 in-3
Sfy = 0 . 542 in-3
Determine Sex @ f = Fy:
Web
i1 = 48 . 194 ksi
Q _ -1 7 . 315 ksi.
Si = -0 . 359
k = 11 .741
w/t = 58 . 417
Lambda = 0 . 725
CALCULATIONS BY MARK D. DUNCAN . P . E.
ATTACHMENT NO. 6 Page 4
rho = 0 . 961
be = rhow
= 3 . 368 in
b1 = 1 .003 in
b2 = 1 .684 in
bl + b2 = 2 . 686 in be = 1 . 8192
b2 = 0 . 817 in
Flanges
S = 29 .644
S13 = 9 . 881
w/t = 29 . 250 Case II
la = 0. 001 in^ 4
Is = 0 . 00263 in'4
Is/Ia = 1 .798
n = 0 . 500
C2 = 1 . 000
C1 = 1 . 000
D/w = 0 . 601
k = 2 . 863 but < 2 . 244
k = 2 . 244
Lambda = 0 . 887
rho = 0 . 848
b = rhow
1 . 488 in
bl = 0 .744 in
b2 = 0 .744 in
Lips
k = 0 . 430
w/t = 13 . 458
f = f3 = 48 . 194 ksi
Lambda = 0 . 873
rho = 0 . 857
d ' s = rhow
0 . 692 in
ds = 0 .692
Effective area:
Ae =
vcg = 2 . 067 from top fiber assumed
L v I ' 1
Element Effective distance L_v L_v^ 2 about own
Length from tors axis (in . - 3)
(in . ) fiber (in . )
Tens . Flange 1 . 755 3 . 970 6 . 967 27 . 660
`.tens . Corners 0 . 683 3 . 891 2 . 657 10 . 340
CALCULATIONS BY MARK D. DUNCAN , P.E.
ATTACHMENT NO. 6 Page 5
Tens. Lip 0 . 808 3 . 349 2 .704 9 . 055 0 . 044
Tens . Web 1 . 686 2 . 910 4 . 905 14 . 271 0 . 399
Comp. Web b2 0. 817 1 . 658 1 . 354 2 . 246 0. 045
Comp. Web b1 1 . 003 0 .749 0 .751 0 . 562 0 .084
Como. Corners 0 . 683 0 . 109 0.074 0 . 008
Comp. Flna . b2 0 .744 0 .030 0 . 022 0 . 001
Comp. Flna. bl 0 .744 0 . 030 0 . 022 0 . 001
Comp. Lip 0 . 692 0 . 594 0 . 411 0 . 244 0 . 028
sum 9 . 613 19 . 869 64 . 389 0 . 600
yca_+ = Lv_ /L
2 . 067 in. from top fiber
I ' eff = Lv_ -2+I ' 1-Lyca-2
23 . 925 in. -3
Act Ieff = tI ' eft
_ 1 . 435
Sec = Ietf/yca+
0 . 695 in . '3
St = Ieff/ycQ-
yca- = depth-ycg
1 . 933
Set = 0 .743 in. -3
Determine Scx @ f = Mc/St:
f = 31 .017 ksi
Web
f1 = 27 .179 ksi
E2 = 27 . 179 ksi
Si = 1 .000
k = 4 . 000
W/t = 58 . 417
Lambda = 0 . 933
rho = 0 . 819
be = rhow
= 2 . 872 in
bl = 1 . 436 in
b2 = 1 . 436 in
bl + b2 = 2 . 872 in be = 1 .7525
b2 = 0 . 317 in
Flanges
S = 42 . 170
S13 = 14 . 057
W/t = 29 . 250 Case II
la = 0 . 000 in" 4
Is = 0 . 003 in- 4
Is/Ia = 10 . 590
CALCULATIONS BY MARK D. DUNCAN , P . E.
ATTACHMENT NO. 6 Page 6
n = 0 . 500
C2 = 1 . 000
C1 = 1 . 000
D/w = 0 . 601
k = 6 . 334 but < 2 . 244
k = 2 . 244
Lambda = 0 . 666
rho = 1 .000
b = rhow
1 . 755 in
bl = 0 . 878 in
b2 = 0 . 878 in
Lips
k = 0 . 430
w/t = 13 . 458
f = f3 = 27 . 179 ksi
Lambda = 0 . 655
rho = 1 . 000
d ' s = rhow
0. 808 in
ds = 0 . 808
Effective area:
Ae = 0 . 667 CHECK
vcg = 2 . 000 from top fiber assumed
L v I ' i
Element Effective distance Lv_ Lv'2 about own
Length from top axis (in. -3)
(in. ) fiber (in. )
Wens . Flange 1 . 755 3 . 970 6 . 967 27 .660
Tens . Corners 0. 683 3 . 891 2 . 657 10 . 340
Tens . Lip 0 . 808 3 . 349 2 .704 9 . 055 0 . 044
Tens . Web 1 .753 2. 876 5. 041 14 . 498 0 . 449
Comp. Web b2 0 . 317 1 . 842 0 . 583 1 . 074 0 . 003
Comp. Web bl 1 . 436 0 . 965 1 . 386 1 . 338 0 . 247
Comp. Corners 0 . 683 0 . 109 0 . 074 0 . 008
Comp. Fing. b2 0. 878 0 . 030 0 . 026 0 . 001
Coma. F1na . bl 0 . 878 0 . 030 0 . 026 0 . 001
Comp. :Lip 0 . 808 0 . 651 0 . 526 0 . 342 0 . 044
sum 9 . 996 19 . 992 64 . 318 0 . 786
vra+ = Lv/L
2 . 000 in . from top fiber
I ' etf = L_v" 2+I ' 1-Lvcg- 2
25 . 120 in. " 3
CALCULATIONS BY MARK D. DUNCAN , P. E.
ATTACHMENT NO. 6 Page 7
Act Ietf = tI ' eff
1 . 507
Scc = Ieff/ycg+
0 .754 in. ' 3
St = Ieff/yca-
ycg- = depth-ycg+
2 . 000
Scr = 0 . 754 in. ^3
fc = My/Scc
= 31 . 028 ksi
ft = Mv_ /Sct
31 . 028 ksi
Determine Mc :
MY = S f Fv_
41 . 463 kip-in
Me = CbroA(ThetaeyThetat) ' . 5
Cb = 1 . 000
Thetaey = Pi "2E/ (KyLy/ry) '2
"17 . 080
Thetat = (GJ+ (Pi-2) ECw/ (KtLt) "2) ) /Aro'2
= 10 . 921 kip-in
'Ile = 23 .772 kin-in Me > 0 . 05Mv_
Mc = 23 . 383 kip-in
Therefore:
Mn <= 38 . 201 kip-in
<= 23 . 375 kip-in
Mn = 23 . 375 kip-in
Ma = 13 . 997 kip-in
1 . 166 kin-ft
Combined bending and compression:
1 >= P/Pa+CmxMx/MaxAlphax+CmyMy/Ma_yAlphay (Ea. C5-1 )
1 >= P/Pao+Mx/Maio+My/Mayo (Ea. C5-2)
;when P/Pa <= 0 . 15 use:
I >= P/Pa+Mx/Max+My/May (Eq. C_5-3)
P/Pa = 0 . 187
Cmx, Cmv_ = 0 . 850
Alphax = 1- (OmcgacP/Pcr)
Omega(-, = 1 . 920
CALCULATIONS BY MARK D. DUNCAN , P. E.
ATTACHMENT NO. 6 Pape 8
Pcr = Pi-2EIb/ (KbLb) "2
= 32 .069 kips
Alphax = 0 . 962
Pao = 14 . 026 kips
Mx = 2 . 680
My = 0 . 000
Max = 13. 997
May = 0 . 000
Mateo = 38 . 201 kip-in
Mayo = 0 . 000
(Eq. C5-1 ) = 0 . 356 <--Controls
fEa . C5-21 = 0. 115
(Eq. C5-3) = 0 . 379
Compression capacity (Pao) :
Fn = F_y
55 . 000
Determination of Ae :
Flanges :
d = 0 . 808
Is = 0 . 003
D = 1 . 055
w = 1 .755
D/w = 0 . 601
S = 29 . 644
S13 = 9 . 881
w/t = 29 . 250 Case II
Ia = 0 . 001
n = 0 . 500
is/!a = 1 . 798
k = 2. 863 <= 5 . 25-5 (D/W) = 2. 2443
k = 2 .244
C2 = 1 . 000
C1 = 1 . 000
Lambda = 0 . 887
p = 0 . 848
b = pw
= 1 . 488
w/t = 24 . 799
Web:
w = 3 . 505
w/t = 58 . 4166666 OK < 500 (Section B3 . 1- (a) - 0) 1
k = 4 . 000 (Since connected to two stiffening_ elemen
Lambda = 1 . 327 > 0 . 673
n = 0 . 629
b = pw
CALCULATIONS BY MARK D . DUNCAN, P . E.
ATTACHMENT NO. 6 Paae 9
2 . 204
w/r_ = 36 .729
Lips .
d = 0 . 808
k = 0. 430 (unstiffened compression element)
ds = d ' s (for simple li_o stiffener)
Lambda = 0 . 932 oh shit
a = 0 . 820
ds ' =d = 0 . 808
ds = d ' s (Ts/Ia) <=d ' s
0 . 808
d/t = 1:3 . 458 < 60 (section 81 . 1- (a) - (3) )
Calculate new Area:
Ae = 0 . 490
Pn = 26 . 930
Omeaac = 1 . 920
Pa = 14 . 026 kips
CALCULATIONS BY MARK D . DUNCAN . P . E.
Q
DIAPHRAGM STRENGTH CALCULATION
per
Steel Deck Institute
'DIAPHRAGM DESIGN MANUAL'
(second edition)
PANEL PROFILE: 29 ga. Norclad Panel Data:
Panel Width- 36 .0000 (in. )
Rib Space- 9 .0000 (in_ )
Rib Depth 0 . 625,0 (in. )
Thickness- 0 .0162 (in. )
Minimum IY- 0 .0071 (i.n�!/ft. )
Dim. ' f ' - 0 .7500 (in. )
Dim. 'w' - 0 . 8000 (in . )
Dim. ' e ' - 3 .6250 (in- )
FASTENER DATA: Structural Stitch
Diameter: No. 12 No. 8
Ult. Shear Strength: 557 lbs . 304 lbs .
(Structural Fastener Shear Strength Calculated Per SDI Eqn. 4 . 5-1)
(Stitch Fastener Shear Strength Calculated Per SDI Eqn. 4 . 5-2)
FASTENER SPACING: Structural Stitch
Diaphragm Edges : 60 .0000 in. o/c N/A
Panel Sidelaps : N/A 60 . 0000 in. o/c
Diaphragm Ends : 1 . 5000 in. N/A
10 . 5000 in.
19 . 5000 in.
28 . 5000 in.
Int . Supports : 1 . 5000 in. N/A
10 . 5000 in- -'
19 . 5000 in.
28 . 5000 in.
DIAPHRAGNI LENGTH: 10 .0000 feet
INT. SUPPORT/PURLIN SPACING: 5 .0000 feet
STRENGTH BASED ON EDGE FASTENERS : (SDI Eqn. 2. 2-2)
With.
Al = 1 . 0000 Su = (2k . + NpA2 + Ne) Qf/L
A2 = 1.0000
Np = 1 = 167.10 plf
Ne = 0
Qf = 557 lbs .
L = 10 .0000 f t.
*+t:tt!.:C*tt:l•tt****:l':l':t*:t*:t:C:t:ft:t:tY::t:!�7 *:t:t*ttt;✓tt+tt7•••v *a+,y;•+;t•ri.**y**tt<+t:t7t.+, ++r;-
STRENGTH BASED ON INTERIOR P YELS : (SDI Eqn. 2 . 2-4a)
With:
A = 1
z = 1 - DL•v/ [240 (t) - .5 J = 0 .8977
B = NsAs -�- (1/W-2) (2Np*sumXp"2 + 4*sumXe"2) = 3 .1332
D = 0 .6250 in.
L•v = 5 .0000 f t.
t = 0 .0162 in.
Ns = 2 .0000 Su = [2A (z - 1) + BJ Qf/L
As = 0 .5458
W = 36.0000 in. = 163 .12 plf
sumXP-2 = 441.00
sumZa'2. = 441.00
:t%tY::t:rt*tt+**:C*t+;.+;F!,:+:t:t:t.tt++! +;i;tt:ttt:ti*y•tt;t:' s+y;t;ta�•s**+tit*t+:titt*:t:t**•t�;;t*y;t;r++;.. ..
STRENGTH BASED ON CORNER FASTENERS : (SDI Eqn. 2 . 2-5)
With: Su = [ (N"2*B 2) / (L 2*v 2 + B 2) ] '0 . 5
N = 1. 3333 fas/ft
169 ..89 plf
t*t:tt*******!,*+:';*ii•**:t*******+t:t++*.+.t'****t*****t.*****+*********t:t*'***i:*tt****-
STRENGTH BASED ON SHEAR STABILITY: (SDI Eqn. 2 .4-2)
With: Sc = [3250/Lv"2] (I-3*t"3*p/s) -0 . 25*l000
I = 0 . 0071 ia4/ft = 142 .07 plf
p = 9 .0000 in.
s = 2 (e + w) 3- f = 9 . 60 in.
e = 3 .6250 in.
w = 0 . 8000 in.
f = 0 . 7500 in .
1 t at.t .tt .. .. .. :t;t:tt --t * t t*ti:t.t!' .. .. .. .r ..i. . . .�. rt*i• .0 !:tt .. ..
1 MINIMUM WORKING STRENGTH = 163 . 12/2 . 35 = 69 . 41 plf
attar «t . «;. ..yt+. { ta y .. t . tt.t t.t:t is tk :k* t!: .ttt !'r. t !'t k.t i:tt Y. !' !' tt .. •`- i
DIAPHRAGM STRENGTH CALCULATION
per
Steel Deck Institute
' DIAPHRAGM DESIGN MANUAL '
(second edition)
PANEL PROFILE: 26 ga. SuperSpan Panel Data:
Panel Width- 36 .0000 (in. )
Rib Space- 12 . 0000 (in. )
Rib Depth- 1 .2500 (in. )
Thickness- 0 . 0162 (in. )
Minimum IY- 0 . 0423 (in4/ft . )
Dim. ' f ' - 1 . 0000 (in. )
Dim. ' w' - 1. 8580 (in. )
Dim. ' e ' - 4 . 1250 (in. )
FASTENER DATA: Structural Stitch
Diameter: No. 12 No. 8
Ult . Shear Strength: 557 lbs . 304 lbs .
(Structural Fastener Shear Strength Calculated Per SDI Eqn. 4 . 5-1)
(Stitch Fastener Shear Strength Calculated Per SDI Eqn. 4 . 5-2)
FASTENER SPACING: Structural Stitch
r ' -tphragm Edges : 60 .0000 in. o/c N/A
_iel Sidelaps : N/A 30 . 0000 in. o/c
Diaphragm Ends : 2 . 3750 in. N/A
14 . 3750 in.
26 . 3750 in.
Int . Supports : 2 . 3750 in. N/A
14 . 3750 in.
26 . 3750 in.
DIAPHRAGM! LENGTH: 15 . 0000 feet
INT. SUPPORT/PURLIN SPACING: 5 . 0000 feet
STRENGTH BASED ON EDGE FASTENERS : (SDI Eqn . 2 . 2-2)
ch.
Al = 0 .7674 Su = (2A1 - NPA2 Ne) Qf/L
A2 = 0-.7674
Np = 2 = 113 . 98 plf
Ne = 0
Qf = 557 lbs .
L = 15.0000 ft .
t*t t t t t t t t t t t t t**t t t*t t t*******
STRENGTH BASED ON INTERIOR PANELS : (SDI Eqn. 2 . 2-4a)
With:
A = 1
z = 1 - DLv/ [240 (t) - . 51 = 0 .7954
B = NsAs - (1/W^2) (2Np*sumXp^2 + 4*suniXe-2) = 5 . 2958
D = 1 .2500 in.
L-,,? = 5. 0000 ft .
t = 0 .0162 in.
Ns = 6 .0000 Su = [2A (z - 1) BI Qf/L
As = 0 . 5458
W = 36 .0000 in. = 181 . 46 plf
sumXP-2 = 327 . 42
sumXe-2 = 327 . 42
STRENGTH BASED ON CORNER FASTENERS : (SDI Eqn. 2 . 2-5)
With: Su = ( (Ni-2tB-2) / (L-2tN^2 B^2) 1 ^0 . 5 t
N = 1 .0000 fas/ft
= 185 . 43 plf
t***: x**�:t x t*t
STRENGTH BASED ON SHEAR STABILITY: (SDI Eqn. 2 . 4-2)
With: Sc = [3250/L%,^2] (I-3*t-3*p/s) -0 . 25t1000
I = 0 . 0423 in4/ft = 540 . 04 plf
p = 12.0000 in.
s = 2 (e + w) - f = 12 - 97 in.
e = 4 . 1250 in.
W = 1 . 8580 in.
f = 1 . 0000 in .
tt 1:t;k t :t t t Y .ttt .t t :t;k :k .lc :k t.t tAt
1 MINIMUM 14ORKING STRENGTH = 113 . 98/2 . 35 = 48 . 50 plf
1 A;t t *.'! *t t:t, t.t t* A,;t t ;t t .t.t.t t t t It t ? Al*:t tt*AA ;t :t :t .t ;t :t:t.k ?:* A, t*' :t :t.t
TECH-FAST
METAL SYSTEMS INC.
STRUCTURAL CALCULATIONS
FOR
Nc
0
SAND HILL STORAGE, PHASE II
97
4
Kirk Chafe .o�o� �P�cr�xtio ww
N.E. 3150 Highway 300 �SSInNAL E��l�
Belfair, WA 98528 y
EXPIRES: IT 1-7
PREPARE Y:
MARK AN, P.E.
j656des.xls
Headquarters: 711 St. Helens, Suite 200 Tacoma,Washington 98402 253-572-4440 Fax: 253-572-6396
Tacoma 800-709-4440 Phoenix 800-695-1006 Houston 800-822-8628
02
DATA ENTRY SECTION
PROJECT INFORMATION PRODUCT SELECTION
CUSTOME Kirk Chafe 1 Roofing 1 SuperSpan
ADDRESS:N.E. 3150 Highway 300 1 Siding 2 Norclad
Belfair, WA 98528 2 Partitions 3 PBR
PROJECT: SAND HILL STORAGE, PHASE II 7 Structural 4 U-Panel
FILE NAME j656des.xls 10 Conc Anch. 5 MVB
VERSION 81005.mdd 0 CMU (0/1) 6 WS-24
7 BHP Struct
snow load: 25 psf BUILDING A 8 NCl/MBCI Struct
live load: 20 psf width,ft 40 5/32x1 1/4.. 10 (stand:
dead load: 2 psf length,ft 156 1/4x1 112... 11 (use for
wind speed: 80 mph lat walls 520 .177x1 7/16. 12 (stand,
lat. col. dist: 5 ft. Ing walls 156
long. col. dist: 12 ft. ***shear panel parameters
ext. col. disc: 5 ft. Lateral panel length 20 ft.
eave ht. 15.2 ft. Longitudinal panel length 12 ft.
slope: 1 : 12 (one or 2 sides) 1
SS or DS: 2 (1/2) Roof Sheeting Length 20 ft.
exposure: C B C D
Siesmic Zone: 3 1 2A 2B 3 4
UBC Code 94 97
Na 1
GOVERNING CODES
Uniform Building Code, (UBC) 1994 Edition =
AISC Steel Construction Manual, 1988 Edition
AISI Cold-Formed Steel Design Manual, 1986 Edition -
SDI Diaphragm Design Manual, 2nd Edition
MATERIAL SPECIFICATIONS
-Purlins and columns, 4"and 6", 16 ga. and heavier to
be: ASTM A446 Grade D, 55 ksi min. yield.
-Columns, 2 1/2"and 4", 18 ga. and lighter to be:
ASTM a446 GRADE A, 33 ksi min. yield.
-Roofing, siding and partitions to be:
ASTM A446 Grade E, 80 ksi min. yield.
-Fasteners, as called out in drawings and details.
DESIGN LOADS
Snow Load = 25 psf(ground)
Live Load = 20 psf
Dead Load = 2 psf or actual loads
Wind Load = 80 mph exp. C
p = CeCggsl
qs = 16.40 psf
ht = 16.83 ft
Ce = 1.06
1 = 1
Cq = 1.3 outward
Cq = 0.7 upward
p = 22.60� psf outward
p = 12.17 psf upward
Siesmic(1994) = Zone 3
V = ZICW/Rw
Z = 0.3
1 = 1
C = 2.75
% = 0.00% Reduction factor for snow load over 30 psf.
W = 2 psf
Rw = 6
V = 0.3 psf 0.1375 *W
i
j 04
SUMMARY OF MATERIALS BUILDING A
ROOF PANEL 26 ga SuperSpan or as noted below
SIDING PANEL 26 ga SuperSpan or as noted below
PARTITION PANELS 29 ga Norclad or as noted below
ROOF PURLINS 6Z16x2.25 5.0 ft c/c
RIDGE PULINS 4C16x2.25
HEADERS 4C16x2.25
G I RTS 4C 16x2.5 (25/80C/3)
CONNECTIONS
Center Span 2.03 kips Therefore use 4 TEKS
End Span 1.62 kips Therefore use 3 TEKS
Endwall 0.81 kips Therefore use 2 TEKS
Sidewall 0.81 kips Therefore use 2 TEKS
COLUMNS Use a 4C16X2.25 for all columns
Group 1 Lby= 16.83 ft Lbx= 16.83 ft
Case 1 P = 2.03 kips
Group 2 Lby= 11.83 ft Lbx= 16.83 ft
Case 1 P = 0.61 kips s M = 18.06 in-kips
Case 2 P= 0.30 kips s M = 36.11 in-kips
Group 3 Lby= 16.83 ft Lbx= 16.83 ft
Case 1 P = 1.52 kips s M = 3.99 in-kips
Case 2 P = 0.76 kips s M = 7.99 in-kips
PARTITION PANELS
Lat. interior 29 Ga. Norclad with 4 fasteners per support
Long. interior 29 Ga. Norclad with 4 fasteners per support
SIDING PANELS
Endwalls 26 Ga. Superspan with 3 fasteners per support
Sidewalls 26 Ga. Superspan with 3 fasteners per support
ROOFING PANELS
Lat. roof ' 26 Ga. Superspan with 3 fasteners per support
Long. roof 26 Ga. Superspan with 3 fasteners per support
BASE MEMBERS Remington Low-Velocity Powder-Actuated Fasteners, into 2500 psi con(
Exterior Endwalls 9 in. on center 16 ga angle
Exterior Sidewalls 11 in. on center 16 ga angle
3/8 X 2 1/2 exp bolts with
Mullions 3 per mullion
Jos
ROOF PANEL
26 ga. T-0"wide SuperSpan panel (attachment#1 a) Fy=80 ksi
Snow = 25 psf Span = 5 ft.
Dead = 1 psf Capacity= 68 psf
(based on 68 psf at 5 ft span)
TOTAL 26 psf
Therefore use 26 ga upe pan
SIDING PANEL
26 ga. 3'-0"wide SuperSpan panel (attachment#1 a) Fy= 80 ksi
Wind = 22.60 psf Span = 11.833 ft.
Capacity= 90 psf
(based on 90 psf at 5 ft span)
Therefore use 26 ga SuperSpan
PARTITION PANELS
29 ga. T-0"wide Norclad panel (attachment#2a) Fy= 80 ksi
Load = 5 psf Span = 5 ft.
Capacity= 14 psf
(based on 14 psf at 5 ft span)
Therefore use 29 ga Norclad
ROOF PURLINS
See attachments#3a and#4a for general properties
Span = 12 ft.
Space = 5 ft.
Snow = 25 psf x 5 = 125
Dead = 2 psf x 5 = 10
TOTAL 135 plf
Mss = wl^218
2.43 kip-ft
Therefore use
RIDGE PURLINS
See attachments#3a and#4a for general properties
Span = 12 ft.
Space = 2.5 ft.
Snow = 25 psf x 2.5 = 62.5
Dead = 2 psf x 2.5 = 5
TOTAL 67.5 plf
Mss = wl^2/8
1.22 kip-ft
Therefore use
EAVE CHANNELS
See attachments#4b for general properties
Span = 10 ft.
Space = 2.5 ft.
Snow = 25 psf z 2.5 = 62.5
Dead = 0 psf x 2.5 = 0
Mss = wl112/8 ---------
0.78 kip-ft TOTAL 62.5 plf
Sreq = M(12)/Fb
0.284 inA3 Eave channel and header to make up
the eave member.
4" 16 ga eave channel = 0.053 inA3
4C16x2.25 = 0.346 inA3
Total 0.399 inA3 140.27%
Therefore use 4C1
GIRTS
Span = 5 ft.
Trib = 8.42 ft.
Wind = 22.60 psf
w = 190.21 plf
M = wl"2/8
= 0.59 kip-ft.
Therefore use
REACTIONS S CONNECTIONS WIND TO SNOW RATIO 1
Center Span Columns #12 TEK 3 Fastener from 16 ga to
R = wl(1.25) 16 ga capacity(attachment#5)
2.03 kips
ITherefore use , ultimate = 1620 Ibs
allow = ult/2.5
End Span Columns = 648 Ibs
R = wl
1.62 kips #12 TEK 3 Fastener from 14 ga to
ITherefore use 3-TEKS 14 ga capacity (attachment#5)
Endwall Columns ultimate = 1970 Ibs
R = wl/2 allow = ult/2.5
0.81 kips = 788 Ibs
ITherefore use
#12 TEK 3 Fastener from 12 ga to
Sidewall Columns 12 ga capacity (attachment#5)
R = wl/2
0.81 kips ultimate = 1986 Ibs
ITherefore-use 2 TEKS allow = ult/2.5
794 Ibs
ti
10V
COLUMNS
Columns are divided into 3 groups: _ -
1) Interior columns taking roof load.
2) Exterior endwall columns taking wind and roof load.
3) Interior columns taking roof and partition load.
Group#1 full snow load
Pmax = 2.03 kips Lbx = 16.83 ft.
Lby = 16.83 ft.
Group#2 full wind load
Pmax = 0.81 kips
Mmax = wi^2/8 wind load Lbx = 16.83 ft.
48.03 kip-in Lby = 11.83 ft.
With the 1.33 factor for wind and the load combination
per UBC Section 2303(f):
Case 1
P = 0.61 kips full snow/1.33
M = 18.06 kip-in 1/2 wind/1.33
Case 2
P = 0.30 kips 1/2 snow/1.33
M = 36.11 kip-in full wind/ 1.33
Group#3 5 psf partition load
Pmax = 2.03 kips Lby = 16.83 ft.
Mmax = wl^2/8 wind load Lbx = 16.83 ft.
10.63 kip-in
With the 1.33 factor for wind and the load combination
per UBC Section 2303(f):
Case 1
P = 1.52 kips full snow/1.33
M = 3.99 kip-in 1/2 wind/ 1.33
Case 2
P = 0.76 kips 1/2 snow/1.33
M = 7.99 kip-in full wind/ 1.33
(Refer to attachment#6 for column analysis)
Use a 4C1 6X2.25 for all columns
4
08
LATERAL ANALYSIS
All of the partition walls and some of the exterior walls are
acting as shear walls in accordance to SDI. With the areas being
fairly small the tributary area method will be used to determine the
lateral forces.
Wind Loadina
Lat. = 26735 Ibs <—CONTROLS
Long. = 7232 Ibs <—CONTROLS
Siesmic Loading Area increase due to overhanc = 1
Lat. = 858 Ibs
Long. = 858 Ibs
Shear walls (lateral)
Lat. = 520 ft.
Shear = 51.4 plf = 25.7 plf (for roof)
For interior partition walls: (per attachment#7)
129 Ga. Norclad with asteners per support
For exterior siding:
126 Ga. Superspan with asteners per support
For roofing:
126 Ga. Superspan with asteners per support
Shear walls (longitudinal) '
Long. = 156 ft.
Shear = 46.4 pif
For interior partition walls: (per attachment#7)
129 Ga. Norclad with asteners per support
For exterior siding:
126 Ga. Superspan with asteners per support
For roofing:
126 Ga. Superspan with asteners per support
09
BASE ANGLE ATTACHMENT (light gage)
Exterior Endwalls
Shear = 180.8 pif perpendicular to wall
Shear = 51.4 pif parallel to wall
Tens = 73.0 pif uplift
Remington Low-Velocity Powder-Actuat 9 in. on center
Exterior Sidewalls
Shear = 171.4 pif perpendicular to wall
Shear = 46.4 plf parallel to wall
Tens = 36.5 pif uplift
Remington Low-Velocity Powder-Actuat 11 in. on center
Mullions
Shear = 2169.5 Ibs perpendicular to wall
Shear = 0.0 pif parallel to wall
Tens = 365.1 lbs uplift
3/8 X 2 1/2 exp bolts with 3 per mullion
Fastener capacities
Remington Low-Velocity Powder-Actuated Fasteners, into 2500 psi concrete
0.144 x 1 1/4"
TENS = 170Ibs allowable
SHEAR = 195lbs allowable
3/8 dia x 2 1/2" emb expansion anchor into 2500 psi concrete
TENS = 3281.0 Ibs ultimate
SHEAR = 4087.0 Ibs ultimate
Factor of safety= 4
TENS = 820.3 Ibs allowable
SHEAR = 1021.8 Ibs allowable
Fastener quantities
1 => (x^2+y^2)^.5/SHEAR+Tens/TENS
10
BASE ANGLE CAPACITY(light gage)
Assumes that pin or expansion bolt is placed within 1"of the
verticle leg of the angle or channel. Fy= 55 ksi
Interior(lateral)
Tens = 183 plf uplift
Mact = 0.183 kip-in
Fb = 0.75Fy(1.33)
54.863 ksi
Sreq = 0.003 inA3
t = 0.041 in ere ore use a 16 ga angle
Exterior Endwalls
Tens = 73.013 plf uplift
Mact = 0.073 kip-in
Fb = 0.75Fy(1.33)
54.863 ksi
Sreq = 0.001 inA3
t = 0.026 in ere ore use a 16 ga angle
Exterior Sidewalls
Tens = 56.498 plf uplift
Mact = 0.056 kip-in
Fb = 0.75Fy(1.33)
54.863 ksi
Sreq = 0.001 inA3
t = 0.023 in ere ore use a 16 ga angle
ii
SLAB DESIGN
Concentrated loading from roof columns.
LL = 25 psf
DL = 2 psf
fc = 2500 psi
Factored load
Ft = 45.3 psf
P = 3397.5lbs
Try an unreinforced 4.00 in. thick slab.
fr = 8*(2500)^1/2
400 psi
Design strength = 360 psi
Contact area, Ac = 10 inA2
Analysis per Nelson and Winter 9th Edition
a = (Ac/pi)^1/2
1.78 in.
h = 4 in.
P = 3397.5lbs
k = 250
Per equation 5.31
fb = (0.316P/hA2)(logh^3-4log((1.6aA2+hA2)^1/2-.675h)
-logk+6.48)
321 psi
< r therefore , use a 4.00 in. slab with ar
under column lines to control cracking.
use WWF 6x6xW1.4xW1.4 C centerline of slab
12
SUPER-SPAN .'
Featuring
—1/4"
Zincalum6 11U4"
• 12"
Twice the Life! 36"
❑ Full 36"coverage.
❑ 1 1/4"deep trapezoidal ribs 12"O.C.for
maximum strength.
❑ Full bearing rib at side-lap provides Super-Span'Section Properties
consistent weather-resistant joint. WL S+ I+ I S- I-
❑ Available in a wide variety of attractive Gauge ObsInW* Wflt in'/ft in'/ft
colors or bare ZincalumeO.
❑ Complementary trim and accessories 26 090 .0461 .0475 .0712 .0384
readily available. 24 1.16 .0667 .0656 .1058 .0540
❑ UL580 Class 90 wind uplift rating-
Construction#130, UL Building Materials
Directory.
BHP
BHP Steel Building Products USA Inc.
Sacramento-800.726.2721,916-372.6851 FAX 916-372.7606
Los Angeles-800-272-2466,909-823-0401 FAX 909-823-2625 Phoenix-800-55I-2062,602-598-1200 FAX 602-598-1219
Tacoma - 800-7334955,206-3834955 FAX 206-272-0791 Salem-800-272-7023,503-390-7174 FAX 503-390-7443
Spokane- 800-776-8771,509-535-0600 FAX 509-535-1346 Anchorage-80047&2727,907-349-2727 FAX 907-344-7095
Salt Lake City-$00-441-2477,801-978-0888 FAX 801-978-9099
13
SUPER-SPAN"
Super-Span'Allowable Spans (ft-in)
Loads(psf) `
Gauge Conditions 10 15 20 25 30-. 35 40 45 50
f 10-6 8-7 7-5 6-7 6-1 5-7 5-4 5-0 4-3
SS U180 7-6 6-7 6-0 5-6 5-2 4-11 ' 4_8 4-6 4-5
26 f 13-1 10-8 9-2 8-4 7-6 7-0 6.6 6-2 5-10
DS U180 10-1 8-10 8-0 7-5 7-0 6-7 6-4 6-1 5-10
f I3-5 10-11 9-6 8-6 7-8 7-1 6-8 6-4 6-0
TS U180 I 9-6 8-4 7-6 7-0 6-7 6-2 6-0 5-8 5-6
SS U180 18-50 7-4 6-7 6-2 5-0 I 5-6 I 54 5-1 14-10
24 f 13-7 11-1 9-7 8-7 7-10 7-2 6-10 6-5 6-1
DS U180 ( I1-2 1. 9-10 8-11 8-2 7-10 7-2 ! 6-10 6-5 6-1
f 13-8 13-7 9-8 8.8 7-11 74 6-10 6 6 6 1
TS I U180 110-6 110-6 8-5 7-10 7-3 6-11 6-7 16 5 6 1
Super-Span'Allowable Load (IbsJft.=)
Span
Gauge Condition T-O" I T-6" 4'-0" 4'-6'" 5'-0" L-6- 6'-0" T-6" T-0" 7'-6" 8'-0'
20
SS U180 ( 123 0 66 46 ( 34 I 25 20 15 1223
122 10 18
26 f 190 139 107 84 68 56 47 40 35 30 27
DS 11180 190 139 107 84 68 56 47 37 30 24 20
f 198 146 112 88 71 59 50 42 36 32 28
TS U180 198 146 112 88 68 51 39 31 25 20 17
f 129 95 72 57 46 38 32 27 24 21 18
SS U180 1129 95 72 57 46 35 27 21 17 14 11
24 f 204 150 115 91 74 61 51 44 38 33 29
DS 1/180 204 150 115 91 74 61 51 44 38 33 27
f 209 153 117 93 75 62 52 44 38 33 29
TS U180 1209 I 153 117 93 75 62 1 52 43 34 28 1 23
Notes- 0 Steel conforms to ASTM A792&A924 Grade 40 for 24 gauge and ASTM A792&A924Grade 80 for 26 gauge.
0 For wind loading,multiply allowable load values by 1.33 or allowable span values by 1.15.
0 Values based on the American Iron and Steel Institute(AISI)"Specifications for the Design of Cold-Rolled
Steel Structural Members"(1986 edition,with 1989 Addendum).
0 Span/Load combinations to the right of the bold line apply to walls only.
Loading Table Legend
f-Load limited by flexural bending stress
L-Span(Inches)
1/180-Load limited by a deflection of IA80 of the span
SS-Single span
L Support"TYP"
DS-Double span
I- `
TS-Triple span
-''�. `^'� 40 BHP
or More I— L L —i— L --- 1 BHP Steel Building Products
Zincalume'is a registered trademark of BHP Steel(JLA)Pty Ltd USA Inc.
0 BHP Steel Building Products USA Inc. May 1996 Printed in USA Revision 5M (PS170)
� . 14
NOR-CIAT)"
Featuring
® I 36"Coverage I
Zincalume
Twice the Life!
Full 36"coverage. Nor-Clad®Section Properties
Weather-resistant lap system. wt. S+ 1+ S- I-
Complementary trim and accessories readily Gauge (lbs/ftz) (in'/ft) I (ina/ft) (in'/ft) (in'/ft)
available.
56
Available in a wide variety of attractive colors or bare 30 .54 .01 .00 .01 .00
Zincalume®. � 29 .62 .0132 2 .0072 .0144 .0067
26 .84 .0195 .0101 .0202 .0099
. �OBHP
BHP Steel Building Products USA Inc.
Sacramento- 800-726-2727,916-372-6851 FAX 916-372-7606
Los Angeles-800.272-2466,909-823-0401 FAX 909-823-2625 Phoenix-800-551-2062,602.598-1200 FAX 602-598-1219
Tacoma -800-7334955,206-3834955 FAX 206-272-0791 Salem-800-272-7023,503-390-7174 FAX 503-390-7443
Spokane- 800.776.8771.509.535.0600 FAX 509.535-1346 Anchorage-800478-2727,907.349-2727 FAX 907-344.7095
Salt Lake City-800.441-2477,801.978.0888 FAX 801-978-9099
V
- NOR-CLAD"
Nor-Clad' Allowable Load (ps f)
`
Load/Span Table Span (ft-in)
2-0 2-6 1 3-0 1 3-6 1 4-0 4-6 5-0
f 70 I 45 31 I 23 17 ( 14 11
SS 11120 70 45 31 19 13 9 7
30 DS f 112 72 -50 IA20 I 112 72 50 37
Gauge 8 22 I 16
22 11
U120 113 72 50 ( 37 ( 27 9 13
SS f 80 51. 35 26 20 16 13
U120 I 80 I 5I 35 22 15 I 10 7
29 DS ( U120
Gauge I 131 I 84 58 ( 43 I 33 25 19
f 129 83 57 42 32 25 21
TS I U120 ( 129 83 57 42 30 21 15
SS U120 I 101 65 45 I 33 I 22 15 10
26 80 59 45 35 29
Gau e I DS ( f I 179 ( 115 115 80 I 59 45 I 35 27
U120 179
iI U120 1 163 105 73 I 53 ( 41 30 ( 22
1
Notes: ❑ Steel conforms to ASn,I A-9244-792(formerly ASTM A-792)Grade E(Fy-80 ksi)for 29 and
30 gauge and ASTM A 924/A-792(formerly ASTM A-792)Grade D(Fy-50 ksi)for 26 gauge.
❑ Values are based on the American Iron and Steel Institute(AISI)Specifications for the Design
ofCold-Formed Steel Structural Afembers(1986 edition,with 1989 Addendum).
❑ For wind loading,multip!y allowable load values by 1.33.
❑ FOR SPANS TO THE RIGHT OF THE BOLD LINE,PLEASE cONTACT YOUR BHP STEEL
BUILDING PRODUCTS REPRESENTATIVE.
Loading Table Legend
f-Load limited by flexural bending stress
L-Span(Inches)
Lh=-Load limited by deflection Support TYP
SS-Single span �� L
DS-Double span Tom-- L L
span or More
�� L �4 --' L
or Moree L "I— �'
BHP
BHP Steel Building Products
Zlncalume•Is a registered trademark of BHP Steel(JLA)Pry Ltd USA Inc.
0 BHP Steel Building Products USA Inc. September 1996 Printed in USA Revision (PS 163)
16
C & Z STRUCTURALSECTIONS
Our structural sections bridge the gap
between strength and economy
BHP Steel Building Products' structural sections provide an economical,but superior answer to your struc-
tural needs. Whatever your project or application,our structural sections stand ready to bridge the gap on a
moments notice.
❑ Lengths up to 45 feet available. ❑ Detailing services available for lump sum bids.
❑ Full range of sizes. ❑ Professional sales representatives to respond to your
❑ Competitively priced. consulting needs.
❑ A variety of hole punching patterns. ❑ A complete line of accessories available.
* BHP
BHP Steel Building Products USA Inc.
Sacramento- 800-726-2727,916-372-6851 FAX 916-372-7606
- Los Angeles-800-272-2466,909-823-0401 FAX 909-823.2625 Phoenix-800-551.2062,602-598-1200 FAX 602-598-1219
Tacoma -800.7334955,206-383.4955 FAX 206-272-0791 Salem-800-272-7023,503.390-7174 FAX 503-390.7443
Spokane- 800-776-8771,509-535.0600 FAX 509.535-1346 Anchorage-800478-2727,907-349-2727 FAX 907-344-7095
Salt Lake City-800-441.2477,801-978-0888 FAX 801.978.9099
17
G--& Z STRUCTURAL SECTIONS-
311�� C SECTION
Z-ZAsis Y Y Axis(1n lsGauge t ew 1 S r 1 3 r s
MW (1L� 4.) (W) M) (1n.') (1n•� (In.) - f- I
4 2.Z5 i6 60 5 0.0751 l AM 15849 .4821 3621 S964
14 0.075 .7406 I= AM 1.5746 5983 AS25 .8932
6 2.Z5 16 0.060 .6951 39 33 147 12M 217 5611 3792 A827 A
14 0.075 -M 4.8560 15846 23229 .6974 .4742 .3803
I6 U.060 .8151 7.7599 IB059 3.M% .6175 3895 WM
8 Z.25 14 0.075 I.0406 9 6 n Z3654 3.0320 .4691 .4872 8553
12 0.105 1.47W 13-Ml 3 3.0136 1.0648 6929 .8511
16 0.060 AN &SW 19502 3.0892 .9861 SI83 1.0467
8 2.75 14 0.075 1.1001 108302 25684 3.1028 1'=8 .6490 1.0451
13 0.090 13495 129219 32:67 3.0938 IAA .7809 1.0436
12 0AGS I-ToM 149863 3.7466 3.0847 1.7093 .9118 I.0418
I6 0.060 .3917 93305 2 0373 3.1175 1.4601 6602 1 2333
8 =5 14 0.075 11.1435 I2� 26777 3.1632 IM14 .3272 ( 12320
12 0.15 1.6637 ISM09 4.0841 3.1454 I 25437 1.1664 11301
16 0.060 8471 103031 2.0470 33834 .6?,00 2932 .3433
14 0.07-5 I.11Sb IZ3196 27942 33757 .7964 .4919 .3414
9 225 13 0.090 1-1%1 15351 3.4011 33610 9517 59(0 M96
12 0.15 15750 17.7611 39469 3.Ml 1.1047 .6897 .83ij
32-13
10 2.25 I 12 0.105 1.6910 ZZ9749 4-WO 3.6969 1.1423 I 69T4 43
10 325 14 0.07a 12879 3.6191 3.8,21 1.9575 I .8459 112042 /
12 0.15 18'i 12 MOM 55115 3.8559 17314 1.1902 1 2,2
14 0.075 1 12741 125.8456139566 1 43755 A625 Z020 .7993
12 2.25 12 1 0.105 1.8900 359288 5"1 43601 1.1979 .7042 I .7961
Section 1'rooerties
Z SECTION Size EMCTTV! X-X Ajd3 ( Y-Y A)ds !
(in inches) Gauge t mmk ! I I S I r I S i r I s-
s A I B I (Ia.) (La.:) ('in.') in. (La-) (1n•') (1n•) i (in.) I (1n.)
I I 7 15708 .7917 111.6202 1 1.1117 I3008 113630 I013
4 2.25 1
1
6 0.060 53519952 .6126 I3 I4 0.075 .74 9 25971 I
i16 .6935 4.0170 1I12364 23647 1.1117 5008 12440 1-5 6
A 6 I 2.25 I 14 I 0.075 .8902 4.9900 11.9392I 23587 13906 I .9285 112451 I 1.9648
(� ,Me T 16 0.060 3135 7.8967 1.3360 3.0690 1.1117 ' -008 1.1515 2.1414
i ' 3.
8 225 05
12 ( 0.1 5 11.46226 (3.6001 13:2.000 13.� 11.9477 � 11.1540 13.7187
16 0.060 .8374 8.76"3.I IA15 3.1Z32 1. 4 6520 1.4050 292^0
14 0.075 1.0651 11.0091I2.4331 3.132; 21188 8180 1.40. 3.6445
8 2.i5 13 0.090 13093 13.1362 3.0975 13.125I 2.6648 9851 1.4075 43.6
12 0.105 15676 152362 13.8091 3'1176 3.1093 1.1527 1.4084 5.0769
16 0.060 .8535 9.4r°.,4 18908 3.1440 2.6517 8235 1.6634 3.8218
8 325 14 0.075 1.1093 11MM 1 25282 13.I6a-9 133179 1.0328 1.6649 4.7672
12 0.105 15869 168767 3.7435 3.1761 4.6570 1.4565 1.6694 6.6475
16 0.060 .8451 10.4570 U750 3.4117 1.1117 5008 1.1124 2.4233
9 2 25 14 0.075 1.I152 13.0196 1 28541 3.4064 13906 .6285 1.1133 3.0233
13 0.090 13451 155411 3.4536 33991 1.6698 .7 1.1142 3.6209
I2 0.105 15676 18.0335 4.0074 33918 1.9477 S863 1.1147 4.2137
16 0.060 .8673 13.4ii7 22929 3.7492 1.1117 5008 1.0770 2.7052
10 2.25 14 0.075 1.1902 16.7667 33096 3.7427 13906 -=5 1.0779 33761
12 0.105 1.6730 232581 4.6516 13.7286 I 1
.9510 1 A78 1.0799 4.7136
l4 0.075 12310 I201928I33389 3M16 133179 1.0328 15695 6.0149
10 325 12 0.105 1.796Z 283911 5.0720 38834 4.6510 1.4546 1.5718 83924
12 225 14 0.075 12757 26.0959 4. 3870259 4.4016 113906 MM 1.0161 4.0818
12 0.105 1.8826 362465 6.0411 49 1.9477 M63 1.01 72 5.6985
Notes: ❑ Materials conform to ASTM A-9241A-653,Grade 50(Fym55 ksi minimum)with G60 galvanized
coating,orASTM A 570 Grade 50(Fy-55 ksi minimum)bare or red oxide coating.
❑ Values based on the American Iron and Steel Institute(AISI)'Specification for the Design of Cold-Formed Steel
Structural Members"(1986 edition,with 1989 Addendum).
❑ Ix-x pertains to deflection determination.
❑ Sx-x pertains to stress determination.
❑ Y-Y axis properties are for the full un-reduced section.
BHP
BHP Steel Building Products
USA Inc.
0 BHP Steel Building Products USA Inc. March 1996 Printed in USA Revision SM (PS201)
�. 18
TABLE 1: STRUCTURAL PROPERTIES OF STUDS, JOISTS, AND TRACK (CONTINUED)
Girt & Strut
(20HDS400 & 20HDS600)
20, 18, 16, and 14 "HDS"
Punched C-Stud
.325" for 20 GAUGE
--� .433" for 18 be 16 GAUGE
.461" for 14 GAUGE
1.250" 093" inside radius andohed 1-1/2olez for 3 1/Z' and r for 1-5larterdwebld Pth- depth
Web Depth O.D.
MEMBER MINIMUM WEIGHT FFFE TWESECIION TORSIONALSECIION
DESIGNATION DESIGN (16dR) GROSS SECTION PROPE1tIIES PROPERTIES MOMENT PROPERTIES
'ITHCIQIFSS GIPACTrY
(niche+) Area 1= Rx Iyy RJ Ix: Sx Ara Ma XO I J I Qv Ro 0
ni^2 in-d in ni^4 ni is^a ni^3 ia^ ni-lbs nil (ia^4 C. is
20HDS158 04346 0-523 0154 0.069 0.671 OD33 0.465 0.069 OD83 0151 1640 -1164 6140E-05 O.M 1.422 0330
20HD6250 OD346 0.625 0154 0.136 1.004 0.039 0.460 0.136 0144 0131 Z846 -ice 7349E-05 0.054 1.505 0.539
2OHDS350 OM46 0.743 0.219 0.406 1362 0.044 0.416 0.406 0= 0.215 4442 -0902 8.729E-05 0.109 1.693 0.716
20HDS358 OM46 0.7S8 0=3 OA41 IA05 0.0" 0.444 0."1 0136 0.220 4658 -0589 8902E-05 0113 1.721 0.733
2MD54W OM46 OZ02 0-236 0.556 1534 0D45 0.438 0.556 1 0170 0233 5327 -0.8.S3 I 9AZE-OS 0.147 1" 0.773
20HIMSO 0.0346 0.978 0.2M 1191 2D34 0.049 0A14 1.191 OA21 0=5 $326 -0.736 1149E-04 1 0301 1 L= OAM
2OHDS600 OM46 1D37 0-105 1.472 2.196 0D50 0.406 1A72 OA75 0.302 9440 -0.704 1118E-04 1 0367 7342 0.910
I8HDS250 0.0451 OM 0247 014S 0.994 O.0SS 0A73 0.245 0196 0.247 3868 -ID91 1.678E-04 OD85 1J50 0.505
18HDS350 0.0451 0994 0193 0J38 1357 0.062 0.461 0J38 0-1m 02" 6079 -0363 1984E-04 0.167 1.726 0.669
ISHDS358 0.04S3 1.013 0.293 0J85 1.401 0.063 0.459 0S85 0323 0299 6377 -0.950 2.022E-04 0.180 1.753 0.707
ISHDS400 0.0451 1.070 0315 0.739 1J31 OD6S 0.454 OJ39 0369 0315 7298 -0912 2137E-04 0.221 IM9 0.754
18HDS350 0.0451 1300 0383 1.597 2D36 0.071 0.431 1.587 0.577 0393 11405 -0.788 2.595E-04 0.444 2.226 0.875
IBHDS600 0.0451 1376 0A05 1.962 2-M 0.073 OA23 1.962 OA54 OAOS 12923 -0.754 2.748E-04 0.539 2364 0.398
I8HDS800 0.0451 1583 0A96 3.996 2.bb 0D73 0396 3.9% 0999 0.496 19740 -0446 3360E-04 ID30 I Z.939 1 0.952
16HDMSG 0.0566 1D44 0307 0301 0.989 OD67 OA65 0301 0140 0307 7200 -ID" 3133E-04 0.102 1.536 0.507
16HDS350 O.O566 1.236 0364 0.664 1350 0D76 0.456 0.664 0379 0364 11357 -0.952 3.887E-04 0.201 1.714 0.691
16HM58 0.0566 1?60 0371 0.721 1394 0.076 0.434 0.721 0398 0371 11917 -0.938 3.963E-04 0.217 1J41 0.709
16HDS400 0.0566 1332 0392 0.912 1-5 OD79 0.449 0.912 0.456 0392 13651 -0.900 4.189E-04 0.267 1226 0.757
16HDS550 0.0566 1.621 0.477 1.965 2.029 olm 0.425 1.965 0.714 0.477 21389 -0.777 5.096E-04 0.538 2.214 0.877
16HDS600 0.05M 1.717 0J06 2.430 2.192 OD88 0.418 2.430 0.810 0J06 24252 -0.7u 5398E-04 OA53 2353 0.900
16HDSSOO 0.0566 2101 0.619 4.959 2M1 OD94 0390 4.959 1.240 0.619 371M -OA37 6ATM-04 1151 2.923 0.953
16HDSI000 OM66 2A86 0.732 8.726 3A57 I O.M 0366 3.726 1.400 0.667 41930 -0J59 7316E-04 I 2076 3.S17 0.975
14HDS250 0.0713 1311 0-w 0371 0.980 0D83 0.465 0371 0.297 0386 88b1 -1.064 6.544E-04 0.130 IJ34 0.500
14HDO50 0D713 1.S54 OAS7 0.824 1J42 OD94 OA53 0.824 OA71 0A57 14099 -0.956 7.752E-04 0=3 1.709 0.667
14HDS358 0D713 1584 OA66 0396 1-w 0D95 0.451 0.896 0.494 0.466 14802 -0.942 7.903E-04 0272 1.736 0.705
14HDS400 0D713 1A75 0493 1.134 1.517 0.098 0.446 1.134 0.567 0.493 16979 -0.9M 8356E-04 OJ36 1.621 0.754
14HDS550 OM13 2D38 0.600 2.452 2=2 0.107 OA23 2.452 0.892 OAM 26696 -0.779 1.017E-03 OA73 2.208 0.875
14HDS600 OM13 7-159 OA36 3D36 Z18S 0.110 OA16 3.036 1.012 OA36 30296 -0.746 1.077E-03 OSIB 2346 0.399
14HDSWO 0.0713 2A43 0.779 6.208 2AU 0.117 0388 6.209 1.552 0.778 46471 -OS78 1319E-03 1365 2.921 0.952
14HDSI000 0.0713 3127 1 0.921 10.938 1 3.446 1 0.123 1 0365 1 10.938 1 2.198 1 0.921 1 65497 1 -0.5591 1.561E-03 1 2.5%1 3.5101 0.975
1715-P
4
� u 19
1-14 Dimensions and Properties for use with the 1996 AISI Cold—Formed Steel Specification
M m Of N to f-- O M to to m to tT N to Q m N to O 'T r\ CD M
M M r` co coM Q Q Q V' Q ITtl') M M Q Q n n co co N N N M n
X 'C M Cl) M M M Q Q Q C: to to to In tD 10 tD to to 10 (D f- n n r"! P
� ? qqq 444 � 4444 g444 g44q 4444 4
n m 0) tT O O N n m C>tT tD r` n CO M Q to to .- N M CO
o rn rn M M Q OR m m m 0 0 0 0 tD tD Up to to to to to Q Q IT Q N
M M M M M N N N N N N N N r- .- .- .- - - r- — ,- r — .-
to Cl) to M to t0 to to co CO a) Cf O N CO m C1 O NM M to
C Q Q .- r- .- tp tp tD tD Q Q Q Q N N N N to tb m q� t0 t0 tp t0 c?
Q Q 0 0 0 tD t0 m to M M M M N N N N �- �- .- .-
to t0 Q of M m N to to m m — r" N Q v Ct tD v Q
U C m n M n M to Cf tD Q to to-M m t0 M .- m N O m t0 m t0 to Q to
�- r- Q tT m t0 to Q M N N — r- — O T' — O O O O O O O
N O O O O O O O O O 0 0 0 0 0 0 0 O O O O O O
Cl) N _ O .- r- to to to .- tD M to M t0 N Q N co 01 to I,
1 tJt I, to to fl M Q_ rl M ._- M m to m Il to r- m N to r, to
S_ v tD m Q it M N CD M M Q N r- M O m M O tD M O to
O O O O O O 0 0 0 0 0 0 0 0 O O O O O O O O O
E f o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
me o0 000 00oc 000c o000 0000 cc 00 0
aiU to
C O N n to r M to n co CD Q to n of M tD m 0 M tD m 0 to
M M to to m Qf C) CD Q to to to 0I a) m O N Cl) M M Q to
C N N N N N N N N N M M M M M M M Q IT ITQ Q Q Q Q Q
E O O O O O O O O O O O Cl O 0 0 0 0 O O O O O O O O 0
7 O Q n to to O m tT M m _Q t0 0 to r-- r- M N t` N_ m co
L.L Q M to to Q m t\ f\ tD N N C- n '0 .0 t7f C) .0 co N O to
Ix C N N N N N N N N N N N M M M Cl? M
x O O O O O O O O O O O O O O O O O O O 0 0 O O O O O
N
tD
t M Of N O_ N_ Q tD Q t0 m Cl T — M Q P. O N Cl) m m O N Q
tD f` n m Of O Q Q c to c0 t` n r` r\ m m m m m O M Cl
0. I ( C N N N N N n M M N n M M (n M In M M M M M N CO M M CO
x Ix 2 Z? 00 coo ClO O O 0 0 0 0 00 O O O O O O 00 00 C,
V1 I to O T to n O coO n (ntD t0 O m 0 to. O N c Cf t M
t0 C to M N to N N co M O N M C) O co a) O m r` co n
coto t0 to -,r (0 to 'r
M cc L) Q M tD Q M M t0 IT M M to Q M N to
M C O O O O O C, O O O O CD O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O 0
m M O m � to n Q m to f- N N to to CO r- Cl to LntD t0 n CO N Q
v co CDN m t` M co to to Q N N M M co O n tD r` O 'IT Q to m
f\ t0 r` to Q to to Q Cl t0 Ln Q M to c co M to Q Cl N to Q M N to
C O O O O O O O O O 0 0 0 0 0 0 0 0 O O O O O O O O O
00 00 0 O O O O O O O O 00 O O O O O O O O O O O
x to t0 f` r 0f to to to r- m m M O O N Q Q M to tD t` r` m(0 to
c rn a M M CO II- r� rn r- pi c, rn C) Q to to to M N li CO rn
co n M M co N N N N .- — r .-- .- .- — r — .- .- — — — — — p
Xx t0 t0 M Q m 0 to to tO m N m N to to t0 M to Q
c n to to O I,. m to N M O m M Q Cl N O O N tO tD to
y C1J C O M Ln N M +- m t0 n CO Q M Q ("') M N Q c7 N N co N N N
may 'x I N N r r 0 0 O O O O O O O O O O O O 0 0 0 0 O
W i.L ¢ O O tp Q Q M ,^ m M C/ N m
L x C tT m O to M Q � Q 7 N I� f� f` Q1 M O O r\ to tD to M — to
— t0 tD r` m N Q Q to n n M O tT r- tD Q r` to Q Cl) Q M n N Cl)
to N tT I` tD to Q M CV N ,•- O O O O O O O O O O O O O
CL
O — M Cl) Q f` to _ O to
L ,� N to Q to t` to m N. N to C) m N M O to Q t` t` to to O N M
I .ice . _ Q I- pr Cl) m Q cI to N m e Ct N CA h M -- m to N O m t0
M N N N - N r r r .- .- O r 0 0 0 0 0 0
O tD O Q to O N O M Q tT CO CO M O (M N to CO .; I\ t0 to Q
1'.
C) C) co pf to N m co to Q M Q n n to cor O N to 0)t0 0) n m M
O m m t0 to P Ln M to Q M N Q M N N Q M N N M N N M
< - 0 0 0 0 coo 0 o 0 0 0 0 0 0 0 cc 00 0 0 0 C. 0
O O to to to U') o to to to to to to t to to to to to to to to to to to to to to to
U)'� c c m_ mmm _mmmm mm_ mm mmmm mmmm m __ mmm m
t� m_00 000 0000 0000 0000 0000 0000 0
� d c
N Cl) tD
E r` n to n to to to to to I. to to h to to V) to to
n 0 CD a C, r� to Q Cl) 0 n Q M n to Q M C) 0 n to Q M n
� o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U 00 600 0000 0000 0000 0000 0000 0
0 o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
to to to to to to to to to to to to to to to to to to to to to to to to to to
M C N � N N N Cj Cj N N N N N � N
O O O O O O CD O O O O O 0 C. 0 C) 0 0 O C:) O O C) O O t
O C) O O O C) O C, C, 0 0 C. 0 O O O C) C) O O O O O O O O
O C O O 0 0 0 0 0 0 0 to to to to 0 0 0 0 to to to to O O O O Ln
N N O O O co m m m to to to to Q Q -T Q M M M Cl) M M Cl) Cl) N
N n Ln Lnkn n to to tin c M Ln n to to n LO v c rl to to
00 000 ^ tnQM 0000 r. tnQM o 0 00 t` m QM
1 x x x x x o00o x x x x o00o x x x x o000 0x
to In to to to x x x x to to to to x x x x to to to to x x x x to
N N N N N to to to . N N N N to to to to N N N N C, Ln LO L N
_ _ _ N N N N N N N N N N N N
D > > D U U U U > > > > UUUU > > > > U
U U U U U U U U U N U, U.) to U U U U to to to to U U U U to
j CM C) C) O to uD to to to to to to Q Q Q Q M M M 11 Cl) Cl) M M N
Y O
�DATA -
ATLAS TECHNICAL.
j _ 20 .
�CtIANI,CAL P1tOPEJITIES DIMENSIONAL PROPERTIES A
Minimum Tensile StTf�rtQfh: 3000 lbs. r1-Necd•Across Flats: - 30S"-.312 PLATED STEEL'
Minimum Torslanai Strength: N In-Ibs. fl -MaJcr Dlcmeter:___ _ Z ='
minimumS earStren the zo2stbs- c-5 ie 3� Q oF�°r' ,01543In4' C"' _._.SELF•DRILLINC1
_ — -
PULL-OUT STRENGTH
NOT
SUGGESTED PRE-DRILL: L REQ0. _ �
2800 LBS.
(;=i:,c '�.iff:>ii it Naei:':f is ,:;,eF :::1! '«S N!•'.;t`>t' ,.. tfa.7[ .S>° .>_. .iae% ifA1• 3r)i :Jl. 26CC LSO.
24CO LBS.
• ..� �i"i> 'li=tlf{;'f i�f•i i•'>•:2s :i:FiTa Fifi:it::141L;1;�' . a_;r. t>y{�2 j 'i.•t s{rI,ri�p:�.'��)'�
' .s"`r.? >w;;s?1'ii,:.,s�.f sff.{.:f:17f3 rt.;F>.._;r>ii=loft>i�Fll.t<j jtii'•s<>.{: 3,jt'r >aE _ :•s,t,�{.
EXPECTED ;�. ; r,-�•;,: _ > ;r !.» t :):__.-: ){:try.:. �,f3 i .;.. 2200 185,
, PULL-OUT
2000 LBS.
STRE .,y^: .F�•M1fjt•f`�f: �f. flf':, "u��Ei hffa.", ,.> n :lf>,<> ..=a'1� rr
C
FROM
18C0 LB
• . •lA8 TEST -. .. . �'' f;f ..i.••�:.�::;-. .,�`:�,.. { �.
PER . LBS.
;n:?s:.�y:y Ca:: w,y� :(; '2�fs: ):�.�.•.1.:• y.t.a�`. >.' :f):).�';?. eis�si::•�:�::�s 3kfif�
SPEClFlE17 • , t :t{ [ r: _ `•J•:t ;` 3 a,:=l.r '•..:`,;is;;.s tf`3.4 xtll
TEST Pt AATE 'fr��i;;:ier. }?3:)s 3:.'. f ti).t,s.;>s s ` ..t `,.' l h.. ,..:,...iF:'fF) ,•i" 1400 LES.
r' THJCrCNE�S _ _ 1;. 4200 LBS,
''iri�::<.._ E>+li ,�f •:�f J:. i Jti,.>.� .tY7"f r ra,rE? Y4 +
iix;;ctMpg
`Z is {i
k'33 rfi^!?iisjt%='�Ysi{Lt>!ftr >s Zf x 2LfTf ri.e. fx s f•L7 f If`",'i s.:�h•. 4000 LES•
f j(;.d {>I.-, ivvt i fj3iUi.
ptt?:'s;sYsr.{'..t..+,ts t„•i.,t s .itr fBY;+:- ,
n 800 LBS,
�7V'8.5 Rt) fl,'Mi'1s
- s i+Zac+ie. s)tiiifs � rR;tN - f sr '• 4 ,�jlri s,: i3�i• tn.!tjs� •;f' fr>e
sot,"
ot," Lr'1(1 p
:a .:.aa, 1' :n: si, i;:•t i:i s>, 3-s 1'>1"s;x:. ' ii: 600.LES.L t.::tG:)f<• h•;tsr,;:. Ys 's''?ff=xp J••''.F a•'.t,'!r� "S 73rygf�') d.. ..� � �..'.� t i:5i
• ��.f 'fiuT1„::ta>,.''J)R{te:' ... xY��i{ "3f>n 1>'{.. 111i:,, :_• • aao LBS.
Cf{NES�: � � � .� o c � � a
PL/�I E T HI
! Ot-
O O O
GAUGE Zt 24 20 48" 'ib 14 13 1Z 11 s0
REFEREJNCE
GAUGE PULL-OVER STRENGTH .050"
',HASHER r
5I8' TYPE
20
CONTROL .030"
• DRIVE 22 � � � � I
2e. I ,020„
26
BONDED
ono"
S g g $ g S
POUNDS
RECOMMENDED DRIVING TOGIS
NOTES "
2500 apr/t elociric !Crew 91:n.viltr;
Denofe{ actual lab tell results and shalt be consldorod overa•;e Performance
_ For optimum sesow and washar Performance. seating torque of loth in ibt is suCGe=led Gvgfrjrnd sensing O{str, �pief a to prevent
— Drill sizes shown are approximate•e Variation eni%leollollardness or other factors moy 2
requite ad►usirnonr In mill size Io p G G
' j ; .21
AISI Specification Provisions for Screw Connections
(Reference CUSS Technical Bulletin Vol.2,No. 1 February 1993)
( 4 HWH Plated Steel Self-0riling Screw
Minimum Tension Strength 3000 lbs(Ref.Atlas Technical Data)
Panel to Framing Fastening Capacity:
E4.4.1 Pull-Out(16ga Framing): E4.4.1 Pull-Out(18ga Framing):
Fa= 67.5 ksi(tensile strength of top framing member) F,;*- 55 ksi(tensile strength of top framing member)
d= 0.212 in(nominal diameter of#12 self drilling scew) d= 0.212 in(nominal diameter of#12 self drilling scew)
t,= 0.060 in(thickness of top framing member, 16ga) t c= 0.048 in(thickness of top framing member, 18ga)
P,,,,= 0.85 t,d Fa= 0.730 kips P,,,t= 0.85 t,d F„2= 0.476 kips
(Check that Tensile Capacity, 3000 lbs >1.25 P,,,,= 912 lbs OAK (Check that Tensile Capacity,3000 lbs >125 P,,,,= 595 lbs OK)
E4.4.1 Pull-Out(20ga Framing):
F 2= 45 ksi(tensile strength of top framing member)
d= 0.212 in(nominal diameter of#12 self drilling scew)
t,= 0.035 in(thickness of top framing member,20ga)
P,,,,= 0.85 t�d Fa= 0.281 kips
(Check that Tensile Capacity, 3000 lbs >1.25 P,,,,= 351 lbs OK)
.2 Pull-Over(26ga Panel):
F.,= 82 ksi(tensile strength of panel)
d= 0.5 in(Max allowable metal gasketed washer dia.)
t, = 0.018 in(thickness of top panel)
P,,,,,= 1.5 t, dH,F,,, = 2.214 kips
(Check that Tensile Capacity, 3000 lbs > 1.25 P,,,,,= 2768 lbs OAK
Increased 4/3 for wind loading:
Allowable 26ga Panel to 16ga Framing Load = 243 lbs(FS=3) 324 lbs
Allowable 26ga Panel to 18ga Framing Load = 159 lbs(FS=3) 211 lbs
Allowable 26ga Panel to 20ga Framing.Load = 94 lbs(FS=3) 125 lbs
22
AISI Specification Provisions for Screw Connections
(Reference CCFSS Technical Bulletin Vol.2.No. 1 February 1993)
1 '4 HWH Plated Steel Self-Driiing Screw
Minimum Shear Strength = 2025 Ibs(Ref.Atlas Technical Data)
Framing to Framing Fastening Capacity:
E4.3.1 Connection Shear(16ga/16ga Framing): E4.3.1 Connection Shear(16ga/18ga Framing):
Fn, = 67.5 ksi(tensile strength of top framing member) F,,,= 67.5 ksi(tensile strength of top framing member)
Fa= 67.5 ksi(tensile strength of bottom framing member) F„2= 55 ksi(tensile strength of bottom framing member)
d= 0.212 in(nominal diameter of#12 self drilling scew) d= 0.212 in(nominal diameter of T12 self drilling scew)
t, = 0.060 in(thickness of top framing member, 16ga) t, = 0.060 in(thickness of top framing member, 16ga)
t2= 0.060 in(thickness of bottom framing member, 16ga) t2= 0.048 in (thickness of bottom framing member, 18ga)
t2/11 = 1.0 <= 1.0 t2/t, = 0.8 <= 1.0
Pns= 4.2(t23 d)12 F., = 1.918 kips (CONTROLS) Pn,= 4.2(t2'd)'2 Fi2 = 1.119 kips (CONTROLS)
Pns= 2.7 tt d F,,, = 2.31822 kips Pns= 2.7 t, d Fn, = 2.31822 kips
Pns= 2.7 t2 d F 2 = 2.31822 kips Pns= 2.7 t2 d F 2 = 1.511 kips
Alowable Shear 16ga/16ga= 639 Ibs (FS=3) Alowable Shear 16ga/18ga= 373 Ibs (FS=3)
(Shear capacity 2025 Ibs < 1.25 Pns= 2398 Ibs) (Shear capacity 2025 Ibs > 1.25 Pns = 1398 Ibs
(Therefore Allowable Shear Capacity= 540 Ibs (FS=3))
E4.3.1 Connection Shear(18ga/18ga Framing): E4.3.1 Connection Shear(20ga/18ga Framing):
•, = 55 ksi(tensile strength of top framing member) F., = 45 ksi(tensile strength of top framing member)
= 55 ksi(tensile strength of bottom framing member) Fa= 55 ksi(tensile strength of bottom framing member)
d= 0.212 in (nominal diameter of#12 self drilling scew) d= 0.212 in (nominal diameter of 912 self drilling scew)
t, = 0.048 in(thickness of top framing member, 18ga) t, = 0.035 in(thickness of top framing member,20ga)
t2= 0.048 in (thickness of bottom framing member, 18ga) t2= 0.048 in (thickness of bottom framing member, 18ga)
t2/t, = 1.0 <= 1.0 1.0< t2/t, = 1.4 <2.5
Pn,= 4.2(t23 d)12 Fa = 1.119 kips (CONTROLS) Pns= 4.2(t2'd)12 F„2 = 1.119 kips
Pns= 2.7 t, d Fo = 1.51114 kips Pns= 2.7 t, d F,,, = 0.89123 kips (CONTROLS)
Pns= 2.7 t2 d F 2 = 1.51114 kips Pns= 2.7 t2 d F 2 = 1.51114 kips
Alowable Shear 18ga/18ga= 373 Ibs(FS=3) Alowable Shear 20ga/18ga= 297 lbs (FS=3)
(Shear capacity 2025 Ibs> 1.25 Pn, = 1398 Ibs OK) (Shear capacity 2025 Ibs> 1.25 Pns= 1114 Ibs
23
1C80 Evaluation Service, Inc.
S360 WORKMAN MILL ROAD • WHITTIER,CALIFORNIA 90601-2299
(� -►-_ , Asubsidiarycorporadon of the International Conference of Building Officials
-,EVALUATION-REPORT SUPPLEMENT ER-1821
Copyright 0 1997 K30 Evaluation Serviee:Ins June 1, 1996
Filing Category:FASTENERS—Concrete and Masonry Anchors (066)
WEJ-ITANCHOR BOLTANO N.FINDINGS
ANKR-TITE STUD ANCHOR That the Wej-t1<Anchor Batt and ANKH-TITS Stud Anchor described in
WF 1-tT this report comply with the 1994 Uniform Building Code,'" subject to
2415 EAST 1=1 PLACE the following conditions:
TULSA,OKLAHOMA 74104-4414 1 through 7.No change.
I.SUBJECT 8. Use of electroplated or mechanically plated carbon steel an-
Wej-it Anchor Soft and ANKR-TITE Stud Anchor(issued December 1,
chom is limited to dry,interior locations.Use of hot-dipped gal-
be use vaaized cachou steel or stainless steel anchors Is permitted in
Add a finding clarifying the location where expansion anchors can exterior-exposure or damp environments, if the master report
be used. specifically recognizes these types of anchors-
II.DESCRIPTION 9. Use of anchors in resisting earthquake or wind loads is beyond
the scope of this report.
No change. Unless specifically noted in this report supplement,the master re-
port remains valid and unchanged.
III.EVIDENCE SUBMITTED This report expires concurrently with the master report issued June
No change. 1, 1996.
Evaluation reports of ICBO Evaluation Service,Inc,are issued solely to provide information to Chat A member of ICBO,UdLEdng the code upon which the reporr
is bared Evaluation reports are not to be construed as representing aesthetics or any other attributes not specifically addressed nor as an endorsement or recommen-
datioa for use of the subject report
This report is based upon Independent tests or other technical data submitted by the applicant.The ICBO Evaltadon Service,lac.,technical staff has reviewed thr
test results and/or other data,but does not possess test faeilL*s to make an Independent verificadom There Is no warranty by IC30 Evaluation Service,Inc.,eraress
or implied as to any"Finding"or other matter in the report or as to any product covered by the report This disclaimer includet but is not limited to,merchantability.
Page 1 of 1
_ °�.='� ICBO Evaluation Service, Inc. J f 24
5360 WORKMAN MILL ROAD - WHITTiER, CALIFORNIA 90601-2299
A subsidiary corporation o>:the 'International Conference of Building Officials
EVALUATION REPORT ER-1821
Copyright m 1996 ICSO Evaluation Service,Inc. Reissued June 1, 1996
Filing Category: FASTENERS—Concrete and Masonry Anchors (066)
WEJ-IT ANCHOR BOLT AND ANKR-TITE STUD ANCHOR b.Ring:The ring is manufactured from ASTM A 108 carbon steel,Grade
WEJ-IT 1008, or 304 stainless steel.
2415 EAST 13TH PLACE c.Washer.The washer is USS Grade 2 carbon steel or 304 stainless
TULSA, OKLAHOMA 74104-4414 steel.
I.Subject:Wei-it Anchor Bait and ANKR-TITS Stud Anchor 0,Design:Allowable static shear and tension loads are described in ap-
plicable tables.Allowable loads for anchors subjected to combined shear
II. Description:A. General:The anchors are expansion types. Use is and tension are determined by the following equation:
limited to installation in uncracked, normal-weight concrete. (ps/pt)-5,3+(VSN) < 1
S.Wei-it Anchor Bolt:1. General:The bolt is designed for structural where:
connections to concrete.The expansion bolt has two wedges located at Ps = Applied tension load.
opposite sides of the bolt shank.Inclined planes are cut into the bait shank
to form wedge packets, resulting in a uniform overall bait cross section Pr = Allowable tension load.
for placing the anchor before the wedges are expanded. Vs = Applied shear load.
2. Installation:A hole is drilled perpendicular to the surface into un- Vt = Allowable shear load.
cracked, normal-weight concrete, using drill bits that must comply with The anchors cannot be subjected to vibratory loads such as those
ANSI 8 94.12-1977.The concrete thickness must be at least 1.5 times the created by reciprocating engines, crane loads and moving loads due to
hole depth.Hole depth must equal the anchor length.To clean the hole, vehicles.
compressed air and a wire brush are used.The anchor is installed in a pre- Use of anchors in resisting earthquake or wind loads is beyond the
drilled bolt hole having the same diameter as the anchor.As the bolt is scope of this report.The allowable load values indicated in the tables are
tightened three to five turns past the hand-tight position,the wedges re- maximum values and may not be increased for duration of loads such as
main stationary and the bolt shank withdraws,forcing the wedges against wind or seismic loads.
7. the sides of the predrilled hole.See Table 1 for allowable loads,edge dis- E.Special Inspection:When continuous special inspection is required
tances,spacings and minimum embedment depth. as noted in the tables,compliance with Section 1701 of the code is neces-
3. Materials: sary. For the Wei-it and AIUKR-TITE stud anchors,the special inspector
a.Stud:The stud is formed from ASTM A 108 steel,Grade 12L14. must be on the jobsite continuously during anchor installation to verify
b. Washer and Wedge:These components are formed from ASTM A anchor type, anchor dimensions, concrete type, concrete compressive
108 carbon steel,Grade 1008. strength, hale dimensions,anchor spacings,edge distances,slab thick-
ness,anchor embedment and tightening torque.
c.Wire:The wire is formed from MB 227 spring steel. F.Identification:The package or box containing the anchors is labeled
d.Nut:The nut is ASTM A 563 carbon steel, Grade 04. with the anchor diameter, length and type, along with company name,
C.ANKR-TITE Stud Anchor.1.General:The expansion ring-type stud (Wej-it) and name of the quality control agency (United States Testing
anchor is designed for making structural connections to concrete.The Company).The Wei-it sleeve anchor has"Wei-it"and the size designation
ANKR-TITE has an expansion ring crimped around the reduced diameter stamped on the expansion sleeve. The expansion sleeve on the Wej-it
of the stud. sleeve anchor and the expansion ring on the ANKR-TITE are passivated
with blue-dyed chromate for identification.
2. Installation: hole is drilled perpendicular to the surface into with
Each Wej-it and ANKR-TITE anchor is stamped with the manufacturer's
cracked, normal-weight concrete, using drill bits that must comply with logo and the length code on the head.The length codes appear in Table
ANSI B 94.12-1977.The concrete thickness must be at least 1.5 times the 3
hole depth,which in turn must equal the anchor length.To clean the hole,
compressed air and a wire brush are used.The anchor is installed in a pre- Ill. Evidence Submitted:Data in accordance with the IC80 ES Accep-
drilled bolt hole having the same diameter as the anchor.As the bolt is tance Criteria for Expansion Anchors in Concrete and Masonry Elements
tightened three to five turns past the hand-tight position,the expansion (AC01) dated January 1993,and descriptive details.
ring remains stationary and the stud withdraws,forcing the petals of the
expansion ring against the sides of the predrilled hole as the expansion Findings
ring enlarges on the stud taper.See Table 2 for allowable loads,edge dis- IV.Findings:That the Wei-it Anchor Bolt and ANKR-TITE Stud Anchor
tance spacings and minimum embedment depth. described in this report comply with the 1994 Uniform Building Code-,
3. Materials: subject to the following conditions:
a. Stud: The stud is manufactured from ASTM A 108 carbon steel, 1. Allowable shear and tension loads are as described in Section
Grade 121-14,or 303,304 and 316 stainless steel. 11 F and applicable tables..
Evaluation reports of lCBO Evaluation Service,Inc.,are issued solely to provide information to Class A members of IC80,utilizing the code upon which the report
is based Evaluation reports are not to be construed as representing aesthetics or any other attributes not specifically addressed nor as an endorsement or recommen-
dation for use of the subject report I
This report is based upon independent tests or other technical data submitted by the applicant.The iCB0 Evaluation Service,Inc.,technical staff has reviewed the I
- test results and/or other data,but does not possess test facilities to make an independent verification.There is no warranty by ICBO Evaluation Service,inc.,express
or implied as to any"Finding"or other matter in the report or as to any product covered by the report.This disclaimer includes,but is not limited to,merchantability.
- Page 1 of 3
Page 2 of 3 — -
-. ER-1821
2. The minimum spacing.edge and and distance:to In wilk ap- ;mesa is maintained In fiwn aloe
piicable tables.-,.-S::;,, - ti. Where requhed.coatlnuons special iospedtos ht plwvided se-
z Calculations jmd*ng that applied loads comply with this report cording to Secdon•A F. :
iust be submitted to the building ofNciai for approval. T. We(-it and ANIIWTITE Sind Aubm as awnafachrrad h ANIQII -;
4. Amchors_are Rmited to Installation in waacbd caaaste not TITE t-asteahrg Systems,Tuba.Otlahoma;Uft tpailly emrtrot
subjected to tensile exceeding 170 psi(1175 kft). ilupeetiams by United States Testing tompanr. iur, =
5. Anchors are limited to noafire-resistive construction antes:ap- ,7 Q M
prmpriate data.is submitted to demonstrate that anchor perfor This report is subject to re-examination Inane year.
TABLE 1—ALLOWABLE LOADS FOR WEJ4T®WEDGE ANCHORS INSTALLED IN 2,000 psi'STONE AGGREGATE CONCRETEI=
ANCHOR DIAMETER,d MINIMUM ANCHOR EMBED. CAMCAL EDGE UL4TANCE, CRMCAL ANCHOR _
(tom) M ) svAC:WM s. (kwhm) TENSION om1 ) SHEAR moo)
1/4 t /g 2 6 140 305
sh6 1114 23/16 61/. - 165 3W
3/8 11/4 23116 6112 125 305
1/2 13/4 31/16 91/4 195 750
For SI.I inch=S.4 mm.1 Ibf=4.45 N.1 psi=6.89 Va.
17he tabulated values ate for anchors installed at the specified spacing(sQ)and edge(cam,)distances-
2T he tabulated values are for anchors installed in concrete having the designated ultimaoe compressive strength or higher at the time of installation.
3The Wei-it anchor is illustrated as follows:
Original
ems'
4The embedment depth(ky)is the distance from the concrete surface to the bottom of the anchor after the anchor is set.
Me tension values are applicable when the anchors are installed without special inspection as set forth in Section 1701 of the code.When the anchors are installed with
special inspection as set forth in Section 1701 of the code.the tabulated values may be increased by 100 percent.
X'
26
_ ft"3ct3
ER-1
.,, TABLE2—JISLMABLE LOAM FOR MKR-me WED=Amcmcf s RarAUM w STONEAGMUMAM CaNCREiEs=
1� CiRiM" CMICAL �oo0tnat . � ���=` AN CUM ANCHOR Som ANC11011
OfMEf!!R O !Ir®.A*4 dSTANM e.► 31!►ONo.sw 31MM0=nd4 � 1 �e�aswOsl �w�i s��r moon
l� 04 23/; 51/4 435 75S 445 765 450 n0
21h 33/z 71/2 785 L510 820
5%s 31/4 47/8 93/y 1,130 2.085 11210 2.260 1,295 2,440
3/4 33/4 55/g 111/4 1,470 3,390 1.545 3.675 1.625 3.965
For SL-1 inch=25.4 men.I Ibf=4.45 N.1 psi=6.89 kpa.
IThe tabulated values am for anchors in—fled at the specified spacing(xvr)and edge(cc..)disaaees.Spacing distanee may be redtees+d>n OSQ provided the tension
shear values am nsdomd by 40 percent.Edge distance may be reduced to O.SQ provided the tension values am,e ,-.,by 40 percent and the sheer values are rec
by 50 paicmG Linear interpolation may be used for intermediate spacings.
2The abalaQd values we for anchors installed in eoae:t he having the designated ultimate compressive strength at the time of instal ndan.
3MIC ANKR-TrM wedge anchor is;Uumted as follows:
ANKR-TiTEO
Wedge Anchor
•J
t
4 he®bedn=nt depth(h f)is the distance fmm the concrete surface to the bottom of the anchor after the anchor is set-
'Ile tension values are applicable when the anchors are installed without special inspection as set forth in Section 1701 of the code-When the anchors are installed
special inspection as set forth in Section 1701 of the code-the tabulated values may be increased by 100 percent
67Ihe tabulated tension and shear values may be used for 3/g-inch and 1/,.inch stainless steel ANKR-TTTE wedge anchors provided the values are reduced y pe.t_b 10 -
- _
TABLE 3-4.ENGTH IDENTIFICATION CODES
CODE LENGTH OF ANCHOR Qncties) COOE LENGTH OF ANCHOR pncn•a)
A Ib2 < 2 N 8 < 81/2
B 2 < 21/2 O 8112 < 9
C 2112 < 3 p 9 < 91/2
D 3 < 31/2 Q 91/2 < 10
E 31/2 < 4 R 10 < II
F 4 < 41/2 S 11 < 12
G 41/7. < 5 T 12 < 13
H 5 < 51/2 U 13 < I4
I 51/2 < 6 V 14 < 15
J 6 < 61/2 W 15 < 16
K 61/2 < 7 X I6 < 17
L .7 < 71/2 Y 17 < 18
M 71/2 < 8 Z I8 < 19
For SI:1 inch=25.4 men.
0l.'=3.'93 03;26 17.11 502 745 7339 DES-i srEc runt_ 27 Uu�
ICB4 Evaluation Service Inc.
..' S360 WORKMAN MILL ROAD • WHrMER,CALiFpR:NlA90E0I-2_99
A subsidiary corporation of the international Conference Of Building Officials
EVALUATION REPORT - Repot Nc.5067
Copyright m 1996[CB0 Evaluation Service,Inc- Reissued April r, 1°86
Filing Category:FASTENERS—manual, Pneumatic or Powder-driven Steel Studs and Nails (056)
REMINGTON LOW-VELOCITY POWDER-ACTUATED FASTENERS Endings
OESA INTERNATIONAL
2701 INDUSTRIAL DRIVE IV.Findings:That the Remington Low-veiorcity f'owder-atduated Fas-
IiOWLlNG GREEN,l(ENTUCTCY 421tI2 tenerstdescribed in this report comply with the 19941Ilrilzr=Baildltrg
I.Subject:Remington Low-velocihf powder-ac;ualed Fastanars. Code ,subject to the following conditions:
H.Dasrsacttoa:;a Gi:oer3E:T;;e Rerririgtca lour-vetcc:y;,csvdar-actu- 1. Maximum allowable shear and tension values are as noted in
ated fasteners are smocth-shank drive pigs with nominal diameters of Tables 1 and 2 for fasteners driven TWO concrete and site(-No
0.145-inctres and nominal head diameter of 0.296 inch.The fasteners are increase is permitted for wind ar seismic loati ft conditions-
manufactured from AISI 1062-1065 modified steel wire.They are aus- 2. Where wood members are attached by fasteners.the oonoection
tempered to a Roci Weil C hardness of 53-56.The fasteners are mechani- to wood rum be investigated to aosure that the aUanrabte wood
r~i!y zinc plated to a minim:;m iC-MeS's of 0.0002 incnes.The;!sting is stresses are not exceeded.Washers ace required In order that
in condonrartce wit,AS TIM A 164,Type RS.The Remington fasteners wood-bearing stsses will not exceed allowable values where
have a bending yield stress,F�,r=265,000 psi.The fas eners are installed Connections are Subjected to tension forces.
with Remington's low-veiociy powder-actuated fastening too] and are 3. The fastenersim,minimum embedment,minimum spacing and
inter:dedtobeInsralledLT=ncrataandsal.Theallowablesliearandten- edge and end di•Vances=mMwhitTables i and Z.
Sion(pu4out)values for fasteners driven into concrete and steel are set 4. At:ac.lmarrt of sill elates to the pertmater at concrete stabs is
forth in Tables 1 and 2 respectively.For=nnecttons resisdng'ension,a allowed under the following conditions:
steel washer conforming to ASTM A 366 must be used.The washer must
be a minimum 1-inch diameter and p.CZ inch thictc a. No cold;oiat exists between the slab and foundations below
the plate.
Table S is intended to satisfy the requirements of Section 2?=5.a".The b. Na laic "s installed on slabs by concrete bbtit allowable fastener spacing for attachment of,,cod pia:a to ccnc:ste foot- p supported
trig or slab m set fort,in Table 3- foundation Wails.
'- 9_Installaffon:The in 2llatlon of fasteners into mrcr f�and steel is 5_ The maximum spacing of fasteners attaching Wood plates to
by a Remington low-velocity powder-actuated fastening tool.The fasten- concrete comply with Table 3.
fng procedures must comply with the manufac",lr�rt recommendations S. The miairpum concrete thictosess must be three limes the tas-
C.identification:The fasteners are identiF.ed by a label on packaging terser penetration into concrete.
noting the manumaurer's name,wtalcg number and fas'aner size. 7. The fasteners are driven into concrete only after the designated
lit.Evidelice Subinitted:Result of shearand tension tests for fasten- ultimate compressive strength is attained.
ers driven into concrete and steel This report is subject to re-examination in two years.
Eratuaann reports ofICBO Evaluation Serrice,Inc.,are issued solely to provide information to Class A.members of1CRO,udlitzng the code upon which the report
is based.Evaluation reports are not to be conrtrued as representing aesthetics or any olheradributu not speciJ cally addressed nor as an endorsement orreeom nen-
damin for use of the s t4ioxt report
`- This report it based upon Lmdependera tesrr or othertechnical data submiaed by the appiicunt.Tftr 1CB0 Eraluatiatr Scrrice,inc.,technical stafjhas reviewed the
• test rest.4s a,vt/..r nth.•r data,hue du.s root pasxes L:rt facilities to nwtfe an irsdependent verification.Trwre!s na vurtartty b)lCI30 Pralttatinn.Brinier,I,se.,tzp►ets
ar implied,as to any"Finding"or other matter in the report or as to any prnduet covered by the report.This dIscla/tner Includes,but is not UmUed to,nwrthaXta&Aty.
D2gM 1 of 2
04i23.'93 03:26 F.0 502 745 7339 DES. SPEC TOOL ®003
2$
Page 2 of 2
Report No.W67
TABLE I—ALLOWA13LG WORKING VALUES FOR REMINGTON LOW-VELOCrry FASTENERS
t' INSTALLED IN STONE-AGGREGATE CONCRETE t.a
aaNurtAr cor�t*nt1 eoMvwessivE rrRt�cn+
CATALOG OtAa1iTER PENEMATMN �! 2000 p� 2-m pel _, 3.000 pN ?.�0 Pi �.000 pal
NUratitSA {to j {r,J (M J Tension SH..r 7LO
ff
TinraiprrSPI25 .!}4 t 5 719524(o)
Through 144 lI/ 3 1� ISM 110 160 120 I70 3
SP30Q 130 180 210 !8:
1 The fastcnas must not be driven atttil the Cotseete has torched the desigssated ultimate:attapressive strength.
2The 3!lowable shear and tension values are for the fast tsrr Orgy-ll pod at sttel membea connected serest be investig
ated Sneed st poate3y is W=nftnm with aazptr�do d
TABLE Z—ALLOWABLE WORKING VALUES FOR REMINGTON LOW-VELOCITY FASTENERS INSTALLED IN STEEL(potrnds)1.2
t:ATALOG SHANK DlA iffrEi M ghKm EDG>:
NUMSFR
SP 50 thmu h (44 CtS1'f, i bittgNWd SPACIIVG SrE!<L J SttEAq
�. .I•r4 th 1 41P��)
SP 300 .144 1 14 f 11y �4 160 no
200 680
'The entice pleated portion of the fasCaner must penetrate the ne-_I to obtain the tabutared values.
ZIcri allowable shear and session valves are for&me fitterAr only'good or steel.mesnbers coraserted must be ns=d9ared separately in accordance:with accepted design
crltetia.
TABLE 3- ALLOWABLE FASTENER SAACING.FOR ATTACHMENT OF WOOD PLATE TO CONCRETE FOOTING OR SLABIA
OYF1iAt4 SMJJIK MAJ MUtA SP ACWG 14 FTC
t.ElIGTi1 MEAD mMAETeA
CATALOG 1WFtBiri thrmaff) ��-'�,+t DIAMFT� InMAor Nont>•arwry E:p.:er WN�T
(4+�frs) Iptartor[iearitrQ WiJa3 py'y�:
SP 300 or SPIV 300 3 1 300 .144
'Spacings are hased upon Ih+:auaclunent of 2-inc--.nominal dsick_^c;wwd sill plzt:µ•IL'specific rmviry of 0.4S or meter to rotate Boor stabs or fr xings in accor-
dance with Section 2326.6 of the code for ma..-imurtt rwo-smrr buildings.
2A11 walls shall have fasteners placed at 6 Inc.-he frm the ands of silt plates with tmaximmn sa3ang baw-=as china n abov,
'"'sreners infncawd shag have two pins placed at 6 itches=d 10 ine.!.a respeetiveiy from each ersd of sill plates with maxi=mn spacing as shown above_
!fasteners must be installed with a mirLm„-.I-ir--4-
r "
Columns
,1 29
Multiple Case Column Loading using Column65.XLS.Cm=1.0
Sand Hill Storage Ph 11 Building:A
Width 40 ft OL , psf
Slope 1 LL 20 psf
Singlefdoub 2 SL 25 psf
Eave 14.83333333 It '11ad: 22.6 psf
Hay Spaciaq: 12 It 4nt Uplift: 12.17 psf
12 ft-ext
Purl I n Spacing: 5 ft o.c.
Interior Columns: Exterior Columns:
Grp1 Cs1 Grp1 Cs2 Grp2 C91 Grp2 Cs2 Grp2 Cs3
Size 4C16X2.26 4C16X2.25 6C16X225 6C16X2.25 GCISX225
Fy 55 55 55.00 55 55
dl+sl+pl dl+ll+pl dl+sl+.Swl(a 0.75 d1+.5s1+wl @ 0.75 dl+ll+wl 0.75
L.bending 16.5 16.5 16.08333333 16.08333333 16.08333333
Lx 16.5 16.5 16.08333333 16.08333333 16.08333333
Ly 1.5 1.5 5 5.00 5.00
Lt 6.5 6.5 51 51 5
P (k) 2.03 1.65 0.47 0.05 0.22
Mx (k-in) 10.209375 10.209375 17.30489063 34.60978125 34.60978125
Wind incR No No Ind Intl Inca
(incrd in loads)
RESULTS
Pa 3.815829003 3.815829003 8.312836779 8.312836779 8.312836779
Me 22.00887325 22.00887325 34.76174121 34.76174121 34.76174121
(Eq.C5-1) 0.995894326 0.897371725 0.555847316 1.00225136 1.023570855
(Eq.C5-2) 0.411687214 0.384955803 0292984901 0.523828029 0.5356271
(Eq.C5-3) 0.994559563 0.896284719 0.554424001 1.00193504 1.022234969
OK? Section will work Section will work Section will work Section will not work Section will not work
with hat channels at 6 and 1 a AFF close enough,within 2.4%
girts at 6 atc for all exterior columns
Page 1
COLUMN55 30
COLUMNS WITH COMBINED BENDING AND COMPRESSION
Cm= 1.00 Cb= 1.00
Input parameters: 4C16X2.25 v40721.mdd
Depth = 4 A' Kx = 1
Flange = 2.25 B' Ky = 1
Lip = 1.055 C' Kt = 1
Thickness = 0.06 t Lx = 9.44
Radius = 0.1875 R Ly = 1.50
E = 29500 Lt = 5.00
G = 11300 Fy,fy = 55
P = 1.78 Mx = 14.17
Fu = 65 My = 0
* RESULTS................ Wind increase? N
* Pa = 8.04 kips 4C16X2.25
* Ma = 22.23 kip-in Section will work
* (Eq. C5-1) = 0.86 <—Controls
* (Eq. C5-2) = 0.50 Group 1
* (Eq. C5-3) = 0.86 Case 1
EXAMPLE CALCULATION
Basic parameters and properties:
r = 0.218 radius to the center of the material
alpha = 1.000 ineffective area reduction factor
a = 3.505 straight depth
b = 1.755 straight flange
c = 0.808 straight lip
u = 0.341 curve
A = 0.600 Area
a- = 3.940 depth cl to cl
b- = 2.190 flange cl to cl
c- = 1.025 lip cl to cl
J = 0.001 St. Venant torsion constant
Ix = 1.508 Moment of inertia about x-axis
x- = 0.888 Distance from centroid of the section to cent
ly = 0.482 Moment of inertia about y-axis
m = 1.371 Distance from shear center to centerline of w
Cw = 2.594 Warping Constant
xo = -2.259 Distance from centroid to shear center
rx = 1.586 Radius of gyration, x-axis
ry = 0.896 Radius of gyration, y-axis
ro = 2.902 Radius of gyration, polar
ro"2 = 8.422 Radius of gyration, polar, squared
Beta = 0.394 Torsional-flexural constant
Pagel
COLUMN55 31
Compression capacity:
Determination of Pa (Section C4):
Since the channel is singly symmetric, Fe shall be taken as the small
of Fe calculated according to Section C4.1 or Fe calculated according
to Section C4.2.
Section C4.1
Fey = 721.646
Fex = 57.0393913
(Fe)1 = 57.039
Section C4.2
Thetaex = 57.039
Thetat = 43.138
(Fe)2 = 27.545
Therefore
Fe = 27.545
Fy/2 = 27.500
Fn = Fy/2
= 27.500
Determination of Ae:
Flanges:
d = 0.808
Is = 0.003
D = 1.055
w = 1.755
D/w = 0.601
S = 41.923
S/3 = 13.974
w/t = 29.250 Case II
la = 0.000
n = 0.500
Isla = 10.241
k = 6.236 <= 5.25-5(D/W) = 2.2443
k = 2.244
C2 = 1.000
C1 = 1.000
Lambda = 0.627
p = 1.035
b = w
1.755
w/t = 29.250
Web:
w = 3.505
Page 2
COLUMN55 32
w/t = 58.4166667 OK< 500[Section BI A-(a)-(2)]
k = 4.000 (Since connected to two stiffening elements)
Lambda = 0.938 >0.673
p = 0.816
b = pw
2.860
w/t = 47.665
Lips:
d = 0.808
k = 0.430 (unstiffened compression element)
ds = d's (for simple lip stiffener)
Lambda = 0.659 < 0.673
p = NA
ds'=d = 0.808
ds = d's(ls/la)<=d's
0.808
d/t = 13.458 <60 (section B1.1-(a)-(3))
Calculate new Area:
Ae = 0.561
Pn = 15.429
Omegac = 1.920
Pa = 8.036 kips
Bending capacity:
Members in bending, Section C3
Ma = Mn/Omegaf (Eq. C3.1-1)
Mn = The smaller of:
<=ScFy or (Eq. C3.1.1-1)
<=ScMc/Sf (Eq. C3.1.2-1)
Omegaf = 1.67 factor of safety for bending
Sc = Elastic section modulas of the effective section
calculated with the extreme compression or tension
fiber at Fy.
Sf = Elastic section modulas of the full unreduced section
for the extreme compression fiber.
Sf = 1/y
Sfx = 0.754 inA3
Sfy = 0.542 inA3
Determine Sex LcD f= Fy:
Web
f1 = 48.194 ksi
f2 = -17.315 ksi
Si = -0.359
Page 3
COLUMN55 33
k = 11.741
wR = 58.417
Lambda = 0.725
rho = 0.961 r
be = rhow
3.368 in
b1 = 1.003 in
b2 = 1.684 in
b1 + b2 = 2.686 in be = "- 1.81927
b2 = 0.817 in
Flanges
S = 29.644
S13 = 9.881
wft = 29.250 Case II
la = 0.001 inA4
Is = 0.00263 in^4
Isla = 1.798
n = 0.500
C2 = 1.000
C1 = 1.000
D/w = 0.601
k = 2.863 but< 2.244
k = 2.244
Lambda = 0.887
rho = 0.848
b = chow
1.488 in
b1 = 0.744 in
b2 = 0.744 in
Ups
k = 0.430
w/t = 13.458
f=f3 = 48.194 ksi
Lambda = 0.873
rho = 0.857
d's = flow
0.692 in
ds = 0.692
Effective area:
Ae =
ycg = 2.067 from top fiber assumed
L y I'1
Element Effective distance Ly Ly"2 about own
Length from top axis(in.A3)
Page 4
COLUMN55
Cin.) fiber(n.)
Tens. Flange 1.755 3.970 6.907 27.660
Tens. Comers 0.683 3.891 2.687 `"r= 10.340
Tens. Lip 0.808 3.349 2.704 9.055 0.044
Tens. Web 1.686 2.910 4.905 14.271 0.399
Comp.Web b2 0.817 1.858 1.354 2.246 0.045
Comp. Web b1 1.003 0.749 0.751 0.562 0.084
Comp. Comers 0.683 0.109 0.074 0.008
Comp. Fing. b2 0.744 0.030 0.022 0.001
Comp. Fing. b1 0.744 0.030 0.022 0.001
Comp. Lip 0.692 0.594 0.411 0.244 0.028
sum 9.613 19.869 64.389 0.600
ycg+ = Ly/L
2.067 in. from top fiber
1'eff = Ly^2+1'1-Lycg^2
23.925 in.A3
Act leff = tl'eff
1.435
Sec = leff/ycg+
0.695 in.A3
St = leff/ycg-
ycg- = depth-ycg+
1.933
Set = 0.743 in.A3
Determine Scx @ f= Mc/Sf:
f = 53.144 ksi
Web
f1 = 46.765 ksi
f2 = 46.356 ksi
Si = 0.991
k = 4.018
w/t = 58.417
Lambda = 1.221
rho = 0.672
be = rhow
2.354 in
b1 = 1.172 in
b2 = 1.182 in
b1 + b2 = 2.354 in be = 1.81472
b2 = 0.643 in
Flanges
S = 32.148
Page 5
COLUMN55 35
1 >= P/Pa+Mx/Max+My/May (Eq. C5-3)
P/Pa = 0.222
:.x
Cmx, Cmy = 1.000
Alphax = 1-(OmegacP/Pcr)
Omegac = 1.920
Pcr = Pi^2EIb/(KbLb)"2
1354.907 kips
Alphax = 0.997
Pao = 14.026 kips
Mx = 14.170
My = 0.000
Max = 22.226
May = 0.000
Maxo = 38.201 kip-in
Mayo = 0.000
(Eq. C5-1) = 0.861 <-Controls
(Eq. C5-2) = 0.498
(Eq. C5-3) = 0.859
Compression capacity (Pao):
Fn = Fy
55.000
Determination of Ae:
Flanges:
d = 0.808
Is = 0.003
D = 1.055
w = 1.755
D/w = 0.601
S = 29.644
S/3 = 9.881
WA = 29.250 Case II
la = 0.001
n = 0.500
Is/la = 1.798 y.
k = 2.863 <= 5.25-5(D/W) = 2.2443
k = 2.244
C2 = 1.000
C1 = 1.000
Lambda = 0.887
p = 0.848
b = pw
1.488
w/t = 24.799
Page 8
COLUMN55 36
S/3 = 10.716
wft = 29.250 Case IC
la = 0.001 inA4
Is = 0.003 inA4 -
Isla = 2.611
n = 0.500
C2 = 1.000
C1 = 1.000
D/w = 0.601
k = 3.362 but< 2.244
k = 2.244
Lambda = 0.872
rho = 0.858
b = chow
1.505 in
b1 = 0.753 in
b2 = 0.753 in
Lips
k = 0.430
wft = 13.458
f= 1`3 = 46.567 ksi
Lambda = 0.858
rho = 0.867
d's = rhow
0.700 in
ds = 0.700
Effective area:
Ae = 0.611
ycg = 2.062 from top fiber assumed
- - L y I'1
Element Effective distance Ly Ly"2 about own
Length from top axis (in.A3)
(in.) fiber(in.)
Tens. Flange 1.755 3.970 6.967 27.660
Tens. Comers 0.683 3.891 2.657 10.340
Tens. Lip 0.808 3.349 2.704 9.055 0.044
Tens. Web 1.690 2.907 4.914 14.287 0.402
Comp. Web b2 0.643 1.741 1.119 1.948 0.022
Comp. Web b1 1.172 0.833 0.977 0.814 0.134
Comp. Comers 0.683 0.109 0.074 0.008
Comp. Fing. b2 0.753 0.030 0.023 0.001
Comp. Fing. b1 0.753 0.030 0.023 0.001
Comp. Lip 0.700 0.597 0.418 0.250 0.029
page 8
COLUMN55 37
sum 9.638 19.877 64.365 0.631
ycg+ = Ly/L
2.062 in. from top fiber -
I'eff = Ly^2+1'1-Lycg^2
24.006 in.A3
Act leff = tl'eff
1.440
Scc = leff/ycg+
0.698 in.A3
St = leff/ycg-
ycg- = depth-ycg+
= 1.938
Sct = 0.743 in.A3
fc = My/Scc
57.362 ksi
ft = My/Sct
53.900 ksi
Determine Mc:
My = SfFy
41.463 kip-in
Me = CbroA(ThetaeyThetat)".5
Cb = 1.000
Thetaey = Pi^2E/(KyLy/ry)^2
721.646
Thetat = (GJ+(Pi^2)ECw/(KtLt)^2))/Aro"2
43.14 kip-in
Me = 307.096 kip-in Me>0.5My
Mc = 40.064 kip-in
Therefore:
Mn <= 38.201 kip-in
<= 37.117 kip-in
Mn = 37.117 kip4n
Ma = 22.226 kip-in
1.852 kip-ft
Combined bending and compression:
1 >= P/Pa+CmxMx/MaxAlphax+CmyMy/MayAlphay (Eq. C5-1)
1 >= P/Pao+Mx/Maxo+My/Mayo (Eq. C5-2)
When P/Pa <= 0.15 use:
Page 7
COLUMN55 38
( Web:
w = 3.505
w/t = 58.4166667 OK<500 [Section B!.1-('a)-(2)j
k = 4.000 (Since connected to two stiffening elements)
Lambda = 1.327 > 0.673
p = 0.629
b = pw
2.204
w/t = 36.729
Lips:
d = 0.808
k = 0.430 (unstiffened compression element)
ds = d's (for simple lip stiffener)
Lambda = 0.932
p = 0.820
ds'=d = 0.808
ds = d'sos/la)<=d's
0.808
d/t = 13.458 < 60 (section 81.1-(a)-(3))
Calculate new Area:
Ae = 0.490
r _ Pn = 26.930
Omegac = 1.920
Pa = 14.026 kips
Page 9
COLUMN55
39
COLUMNS WITH COMBINED BENDING AND COMPRESSION
Cm= 1.00 Cb= 1.00
Input parameters: 8C14X2.5 v40721.mdd
Depth = 8 A' Kx = 1
Flange = 2.5 B' Ky = 1
Lip = 0.78 C' Kt = 1
Thickness = 0.075 t Lx = 8.00
Radius = 0.1875 R Ly = 1.50
E = 29500 Lt = 8.00
G = 11300 Fy,fy = 57
P = 8.325 Mx = 2.40
Fu = 65 My = 0
* RESULTS................ Wind increase? N
* Pa = 10.84 kips 8C14X2.5
* Ma = 69.40 kip-in Section will work
* (Eq. C5-1) = 0.80 <—Controls •
* (Eq. C5-2) = 0.47 Group 1
* (Eq. C5-3) = 0.80 Case 1
S T4K C z oArV C•tt c
Pagel
Sheetl 40
Wind uplift on column dips
P uplift 0.772 k wind factor-,
Gage beyond flange= 1 inch
t= 0.1875 inches -
L= 3.5 inches
outstanding log--- 2 inches
T= 0.58 k(reduced by wind factor)
single shear#12 screw-- 585 #/screw-working load(tested ultimate/2.5 F.S.for direct fastener shear)
(tested ultlmate/3.0 F.S.for thru-sheet tearing)
No.of screws req'd= 0.99
trib bending= 0.17 kfinch
Bolt Prying-refer to page 4-90 ASD 9th Ed.
BOLTS:ROW 1 1 bolts
0.58 KIPSIBOLT
SHEAR IN BOLTS: 0 kip/bolt
LOAD TO PLATE(by AISC hanger method) a(geometric)= 1
p= 3.5 (w trib) 1= 0.1875 1.25b= 1.25
Fy= 36 b= 1 a= 1
B= 1.13 d= 0.75 a'= 1.375
T= 0.579 b'= 0.625 d'= 0.8125
"bolts ok,check flange:"
delta= 0.7679
tc= 0.2118
rho= 0.4545
alpha'= 0.2467 alpha= -0.4512
if alpha'is: then Tall is:
>1 1.5662
>0;<1 1.0537
<0 1.13
Tall= 1.0537 k
"flange thickness is ok"
Q=B(delta)alpha(rho)(t/tc)^2 0 kips/bolt prying force
resultant bolt load= 0.579 kips/bolt 0.8475 k allowable
OK
Col-Base.XLSXShs*1 Page 1 8rM98
t
Sheets 41
Roof Loads on Column Base Chas
Wind Upiifc
Wind speed= 80 mph 85 mph 90 mph
Wind Exposure= C C C
qs= 16.4 18.6 20.8
Ce= 1.06 @ 15' 1.06 1.06
1= 1.0 1.0 1.0
Cq= 0.7 - 0.7 0.7
Uplift Pressure= qs*Ce*t*Cq=
12.17 psf 13.80 psf 15.43 psf
Uplift on Clip= 5'x10'x12.17 psf
608.44 lb 690.06 lb 771.68 lb
Snow Load:
Unifom load= 25 psf 30 psf 40 psf
Trib area= 51x10'
50 sqft 50 sgft 50 sgft
Load/Clip= 1250 lb 1500 lb 2000 lb
#12 screw allowable= 585 lb/screw 585 lb/screw 585 lb/screw
Screws Required= 2.14 2.56 3.42
Use: 3 Screws 3 Screws 4 Screws
Thcl.xIs%Sheetl Page 1 9�18I98
42
/ May 20,1998
(` SDI DIAPHRAGM SHEAR
DECK: 1.25'Deck,#12 Frame Fastening.#14 Stitch Fastening s
26 ga superspan
ATTACHMENT PATTERN 3 serews/sht to supports
3 screws/sht at ends
60 'o.c.edge fastener spacing attached to pudin?- 1 (1/0)
30 'o.c.sidelap fastener spacing attached to pudin?- 0 (1/0)
L = 15 length(fl) np - 2 #of pudbw_not at and
L. = 60 span(In) n. - 0 #of edge fasteners not attached to purfln
L - 5 purlin spacing(ft) n, = 6 0 of seem fasteners not attached to pudin
w = 36 deck width(in) N - 1.0 S of fastenersflt at and support
D = 1.25 deck height(n) aj - 0.75 (Ex lw)dist factor at end condition
t - 0.0179 deck thickness(in) (x2- 0.75 (Mkplw)dist factor at purlin condition
(1f = 856 support fastener(Ibs) , - 315
Q, = 383 seam fastener(lbs) Fx.2 - 315
1 = 0.0475 panel moment of inertia irM
do- 12 corrugation pitch,in. Fy - 80 ksi panel
S. 13.44 developed flute width 2(e+wf)+f inches.
ULT SHEAR CAPACITY BASED ON EDGE FASTENER
ULT SHEAR = (2ai+npa2)+n.)OWL
ULT SHEAR = 171.2 pif
ULT SHEAR CAPACITY BASED ON INTERIOR PANEL
A= 1 (one fastener per location,at edge)
X - 1-0W(240t°')
X = 0.8054
a.
a, 0.4474
ULT SHEAR = ((2A(,-1))+n,a,)+(((2npF4)+(4Ex.2))/(v�))CWL
ULT SHEAR = 241.96 plf
ULT SHEAR CAPACITY BASED ON END OF PANEL -
B = (n.a.)+(((2np£xp2)+(4£x.))/(w'))
B = 4.629
ULT SHEAR - (0,NB)/(((B2)+((NL)2))s') _ (NW/(LZN2+B2))0.s Qf
ULT SHEAR = 252.42 plf - 252.416814
SAFETY FACTOR(SF) - 2.35 wind (mechanical connections)
- 2.50 seismic
S 171.2 pif (lowest of ultimate shear capacities)
S SJSF
S. 73 pif -wind
S. 68 plf -seismic
Stability Check:
Sk= 12.95x103/Lv2 (13t3dc/s)"
Sc- 2.5072 Idf
Sc= 2507 pif
Ssc= Sc/(f.$) factor of safety=2.0
SsF 1264 pif
S= 73 pif-wind ALLOWABLE DIAPHRAGM SHEAR CAPACITY
S= 68 pif-seismic
•' 3
• 4
May 20,1998
i
SDI DIAPHRAGM SHEAR
DECK: 0.625"Deck,#12 Frame Fastening,#8 Stitch Fastening
29 ga norctad
ATTACHMENT PATTERN 4 screws/sht to supports
4 serews/sht at ends
60 'o.c.edge fastener specurg attached to purlin?-
30 'o.c.sidelap fastener spacing attached to purlin7- 0 (1/0)
L = 15 length(R) np = 2 #of pudkm not at and
L. = 60 span(in) n, = 0 #of edge fasteners not attached to pudin
L. - 5 purlin spacing(fl) n, - 6 #of seam fasteners not attached to purlin
W = 36 deck width(in) N - 1.3 #of fasteners/R at and support
D - 0.625 deck height(in) of = 1 (Dr./w)dist factor at and condition
t = 0.0134 deck thicievress(in) a2- 1 (Drp/w)diet factor at purlin condition
Qf - 641 support fastener pbs) Dcp2 - 430
Q. - 248 seam fastener(Ibs) bc.2 - 430
1 = 0.0067 panel moment of inertia in`/fl
do= 9 corrugation pitch,in. Fy - 80 ksi panel
s- 0.0134 developed flute width 2(e+"+f inches.
ULT SHEAR CAPACITY BASED ON EDGE FASTENER
ULT SHEAR = (2af+npa2)+n.)QrL
ULT SHEAR = 170.9333 pff
ULT SHEAR CAPACITY BASED ON INTERIOR PANEL
A- 1 (one fastener per location,at edge)
;, - I-DW(240tn
X = 0.8875
a, = Q./Qf
a, = 0.3869
ULT SHEAR = ((2A(1-1))+n,a4+(((2npExp2)+(4"))/(w2)))(:!L
ULT SHEAR = 203.01 pif
ULT SHEAR CAPACITY BASED ON END OF PANEL
B 4.9757 W/ 2N2+BZ))°-5 Of
ULT SHEAR = (Q,r18�(((B2)+((NL)2))°'� _ (N (L
ULT SHEAR = 206.34 plf = 206.338312
SAFETY FACTOR(SF) -2.36 wind (mechanical connections)
- 2.50 seismic
S. = 170.93 pff (lowest of ultimate shear capacities)
S = SJSF
S= 73 plf-wind
S= 68 plf seismic
Stability Check:
Sc= 12.95x1O2/Lv2 (1°t3dc/s)0'25
Ski- 2.4322 ktf
Sc-- 2432 pit
Ssc= Scl(f.$) factor of safety-2.0
Ssk.-- 1216 plf
S= 73 pif-wind ALLOWABLE DIAPHRAGM SHEAR CAPACITY
S= 68 plf-seismic
44
29 ga.Nwefad Fastening:
for a1,off,M4z and Z wkuhtiorm
at end Bond at interior card
X.1= 2 in X.12= 4 In= x41= 2 in x412= 4 ln2
x.2= 0 in x.22= 0 in2 x4z= 0 in x422= 0 in2
x.3= 7 in x.22= 49 W x4a= 7 in x42= 49 in2
x..= 0 in xµ2= 0 W2 x4.= 0 in x4.2= 0 in2
x 6= 11 in x.62= 121 in2 xO= 11 in x4s2= 121 in'
x.4= 0 in x e2= 0 inZ x s= 0 in x4r2= 0 inZ
x.7= 16 in x r2= 2W ins x4r= 16 in 472= 256 inZ
x s= 0 in X.2= 0 in2 x44= 0 in x442= 0 ins
s 36 in Lx.2= 430 in2 Bx4= 36 in n)42= 430 in2
Screw Fastener Strength Caladatiotm
Per 801 Equations:
Qf = 1.25 F„t(1-0.005 Fj = 0.804 kips (equation 4.5-1)
as- 28.5 t 0.3819 kips (equation 4.5.2)
Per AISI W spaeificatiam.
Qf = 0.641 kips
as. 0.248 kips
use;
Qf = 0.641 kips
Q3= 0.248 kips